

Can the use of more musical features

lead to more immersive rhythm games

experiences?

Jonathan Byrne

BYR19702034

19702034@students.lincoln.ac.uk

School of Computer Science

College of Science

University of Lincoln

Submitted in partial fulfilment of the requirements for the

Degree of MComp Games Computing

Supervisor: Dr. Olivier Szymanezyk

May 2024

i

Acknowledgements

Firstly, I want to thank both James Brown and Olivier Szymanezyk for their

supervision and advice regarding this project. I also wish to thank my friend James

Gibson for his advice concerning the creation of the game, together with the general

feedback he has provided. I also wish to thank all those who volunteered to playtest

the game enabling me to refine it. I also wish to thank my parents and brother for the

support and advice they have provided throughout my university experience, together

with all those I have met throughout the university for helping to make my time at

Lincoln one of my most treasured experiences.

ii

Abstract

In this project, a rhythm game has been created which implements new musical

features such as key and volume alongside the existing application of tempo in

rhythm games as it is believed that the use of key and volume could lead to more

immersive experiences than with the use of just tempo. This is evidenced by literature

that confirms a link to both key and emotion, with emotion being a component of

immersion. Volume is linked to intensity, with intense experiences being linked to

more exciting games and therefore should make the game more immersive as a

consequence. The development of both a control and experimental game is discussed

in detail in the design and methodology and implementation sections with the key

findings discussed in detail in the results section. In summary, it can be determined

that the experimental game did facilitate a higher level of immersion when compared

to the control game, with a mean immersion score of 132.5 compared to 121.9, this

being attributed to the colour change feature derived from using key.

However, these results should be treated with caution as there may be reasons why

these differences appeared, some participants may previously have been more

exposed to rhythm games. A new test should therefore be created to determine if this

prior experience in rhythm games is a significant factor.

Keywords: Immersion, Rhythm Games, Tempo, Loudness, Volume, Key, Emotion,

Colour, Difficulty, Flow

The full project can be found here: https://github.com/JonBYR/Year4Project

Final Word Count: 21296

https://github.com/JonBYR/Year4Project

iii

Table of Contents

Acknowledgements.. i

Abstract ... ii

List of Figures .. vi

List of Tables ... viii

Chapter 1- Introduction ... 1

1.1 - Aims & Objectives ... 4

1.1.1 - Aim .. 4

1.1.2 – Objectives ... 4

1.2 - Project Implementation .. 6

1.3 - Contributions .. 7

Chapter 2 - Literature Review ... 9

2.1 - Player Immersion in Rhythm Games ... 9

2.2 - Musical feature exploration .. 10

2.3 - Colours on Immersion .. 12

2.4 - Measurement of Immersion .. 13

2.5 - Musical Features and Game Design ... 15

2.5.1 - Crypt of the NecroDancer ... 15

2.5.2 - Vib-Ribbon .. 15

2.5.3 - Audiosurf ... 15

2.5.4 - Soundfall ... 16

2.5.5 - Rhythm Sprout .. 16

2.5.6 - Games Analysis ... 16

2.6 - Literature Conclusion ... 17

Chapter 3 - Requirements Analysis .. 19

Chapter 4 - Design & Methodology .. 24

4.1 - Project Plan .. 24

iv

4.2 - Risk Analysis .. 26

4.3 - Design ... 34

4.3.1 - Concept Development Phase ... 34

4.3.2 - Game Assets .. 35

4.3.3 - Front and Back End in Games Design .. 36

4.4 - Toolsets and Machine Environments ... 37

4.4.1 - Chocolatey and ffmpeg ... 37

4.4.2 - Version Control ... 38

4.5 - Testing .. 39

4.5.1 - Procedure ... 42

Chapter 5 - Implementation .. 44

5.1 - Implementation of Spotify API .. 46

5.2 - Spotify and Unity ... 51

5.3 - Experimental Game Development ... 53

5.3.1 - Beat Detection Algorithm ... 53

5.3.2 - Key and Colour Implementation ... 61

5.3.3 - Volume and enemies ... 70

5.3.4 - JSON files and Unity ... 77

5.3.5 - Polishing and Playtesting .. 83

Chapter 6 - Results & Discussion .. 94

6.1 - Control Game Creation .. 94

6.2 - Immersion Questionnaire Results... 95

6.3 - Discussion of Findings ... 101

6.3.1 - The use of the slider .. 101

6.3.2 - Player Performance ... 104

6.3.3 - The use of key and volume .. 107

6.4 - Summary of Objectives and Requirements .. 110

Chapter 7 - Conclusion ... 111

References .. 116

Appendix A – Game Design Document ... 133

v

Appendix B – Core Game Loop ... 135

Appendix C – MDA Analysis ... 136

Appendix D - IEQ ... 138

Appendix E – Parent Enemy Class ... 142

Appendix F – Zombie Enemy Script .. 143

Appendix G – Mimic Controller Script .. 144

Appendix H – Skeleton Controller Script ... 145

Appendix I – Mage Controller Script and Bullet Scripts .. 146

Appendix J – Immersion Results for Control and Experimental Games .. 148

Appendix K – Critical values in F Table (University of Sussex, 2005) ... 150

Appendix L – Reckoner Results Table ... 151

Appendix M – Twilight Results Table ... 152

Appendix N - Little Dark Age Results Table ... 153

Appendix O – Shimmy Results Table .. 154

Appendix P – She’s Lost Control Results Table .. 155

vi

List of Figures

Figure 1: The control game for the song Reckoner ... 8

Figure 2: The experimental game for the song Reckoner. As can be seen, there is now a colour change from

the bloom effect, showing a yellow hue. Stronger enemies are also present .. 8

Figure 3: Colour wheel of keys (Ciuha et al., 2010, 2) ... 11

Figure 4: Castel’s colour model (Fonteles et al., 2013, 3) .. 11

Figure 5: The finalised Gantt Chart, showing all stages of development (Byrne, 2023) 24

Figure 6: The use of Chocolatey to download ffmpeg .. 38

Figure 7: The use of ffmpeg to convert a .mp4 to a .wav ... 38

Figure 8: The histogram created by Thompson et al. (2012, 4) .. 41

Figure 9: The workspace for participant testing, showing the control game on the left monitor screen for

players to interact with .. 43

Figure 10: Python code to create an access token that will be used by the client credentials workflow 47

Figure 11: Spotify Client Credentials Workflow, used to generate the JSON files for the project (Spotify,

undated) .. 48

Figure 12: Code to find artist and get top songs by artist ... 49

Figure 13: The returned songs JSON file for the artists AC/DC ... 50

Figure 14: The code for get_track_id and get_track_information .. 50

Figure 15: The track information for Reckoner by Radiohead, including loudness and tempo.................. 51

Figure 16: The first implementation of the GameManager singleton ... 54

Figure 17: The code to convert the bpm for FixedUpdate() using the function bpmConversion() 55

Figure 18: The FixedUpdate() code for the second beat detection implementation 55

Figure 19: The use of onBeat for player movement, when onBeat is true the player is able to move 56

Figure 20: The beat detection algorithm configured to the Update() loop .. 57

Figure 21: The completed beat detection algorithm in Update() .. 59

Figure 22: The slider for visual cues, showing green to inform the player they can move 59

Figure 23: The script that controls the camera shake for missed beats ... 60

Figure 24: The call of this camera shake script in player movement, when the player is not on beat 61

Figure 25: Key to colour dictionary defined by Castel’s model, each colour is shown by each comment . 62

Figure 26: The use of Unity’s bloom effect for a key of 4 .. 62

Figure 27: The code for bloom along with the effect of bloom for a key of 9 .. 63

Figure 28: The red component of the channel mixer .. 64

vii

Figure 29: The calculations required to convert RGB values for the channel mixer 64

Figure 30: The result of using channel mixer for keys 4 and 9 ... 65

Figure 31: The result of using channel mixer on key 0 ... 66

Figure 32: The use of a particle system to display colour, alongside the code required 67

Figure 33: The script for changing the camera colour and the resulting game scene……………………..69

Figure 34: The code for spawning enemies .. 71

Figure 35: The weapon controller script handling different weapon functionality 72

Figure 36: The PlayerController code that adapts the weapon zone depending on movement and aims to

stop player movement is an enemy is within range .. 73

Figure 37: The trigger function in Enemy that allows weapons to attack enemies 73

Figure 38: Revised Weapon Controller, using the Physics2D method ... 74

Figure 39: Limiting zombie movement in the ZombieController script ... 75

Figure 40: The code for enemy attacks, should the trigger collider on players be entered by an enemy ... 76

Figure 41: The initial implementation of JSON files in Unity .. 78

Figure 42: The updated Python code, only exporting the “track” JSON key.. 80

Figure 43: The updated JSON file for Reckoner, which no longer has the meta key 80

Figure 44: The Music Selection scene, containing five buttons that load a level of a specific song attached

on the button ... 81

Figure 45: The Track object in CanvasSelection containing information fields found in the JSON file 82

Figure 46: The MusicLoader and AudioLouder methods, which pass information to the singleton and load

the song relating to the JSON file respectively ... 83

Figure 47: The particle effect after enemy death and the code to trigger this ... 85

Figure 48: Arrow display code that is used to inform players the direction of attack 88

Figure 49: The code to display weapon information in PlayerController ... 89

Figure 50: The results of bloom for all five colours of yellow, blue, orange, green and indigo blue 92

Figure 51: The control game showing song 2 during gameplay – the player has moved upwards and aims

to attack the zombie enemy ... 95

Figure 52: The box plot for the control and experimental games, in blue and orange respectively 96

Figure 53: The histogram for the control game ... 98

Figure 54: The Experimental Game Histogram .. 98

Figure 55: The two sample t test formula (JMP Statistical Discovery, undated) .. 99

Figure 56: The pooled standard deviation squared (JMP Statistical Discovery, undated) 100

Figure 57: The visual cue in Crypt of the NecroDancer (Brace Yourself Games, 2015) 103

viii

List of Tables

Table 1: The Objectives for the project………………………………………………………4

Table 2: Risk Analysis Table (Byrne, 2023)………………………………………………..26

Table 3: Subsections of Chapter 5…………………………………………………………..45

Table 4: Songs used in this project………………………………………………………….77

Table 5: The differing tempos for the song Reckoner………………………………………80

Table 6: The mean number of missed beats………………………………………………...106

Table 7: The means for Q36, Q32 and Q35………………………………………………...107

1

Chapter 1 - Introduction

This section, together with sections 1.1.2 and 1.1.3, have been taken from

the project proposal stage (Byrne, 2023).

The aim of this thesis was to determine to what extent different musical

features in rhythm games could be used to enhance player immersion as

currently rhythm games only incorporating the use of tempo during live

gameplay. Other song features, such as music key, have not been fully

exploited. Hein (2014, 102) states “Most mainstream commercial music

games center around rhythm, rather than pitch, timbre, or other aspects of

music”. Therefore, the use of these additional features could be

incorporated into the genre potentially providing more immersive

experiences.

The aim was to explore new mechanics by integrating musical features

alongside tempo. This differed from existing games as it was planned that

these musical features manipulate the game during play. The user should

perceive that the additional music features are changing their experience.

An investigation was carried out to measure if there was a positive impact

on immersion when compared to existing rhythm games. The aim and

objectives are stated in section 1.1.1 and 1.1.2 respectively.

Music in video games is itself integral to the experience, with Munday

(2007, 3) defining video game music as “sounds and silences generated

by the game software which …. contribute to creating the phenomenon

of the gameworld”. Therefore, music is a contributing factor to immersion

in games. However, the rhythm game alters this definition. Aspects of the

music, i.e. tempo, immerse the player by generating the game mechanics

which can often be very simple, offering as Pichlmair and Kayali (2007,

2

1-3) describe “a single repetitive interactive task for the user” where “the

story and setting as well as the displayed on-screen action are crucial for

the gameplay experience.”, meaning the music still immerses the user in

the virtual world.

Rhythm games use music in combination with visuals to generate an

immersive experience. The PS1 game Vib-Ribbon (NanaOn-Sha, 1999)

has, as Pichlmair and Kayali describe, very simple gameplay requiring

one/two button(s) to be pressed at the correct moment in time with the

music. Similarly, Crypt of the NecroDancer (Brace Yourself Games,

2015) is a dungeon crawler game where all actions such as movement and

attacks are only executed if the player presses the button in time with the

music. In both games the difficulty is affected purely by tempo. Vib-

Ribbon’s protagonist moves quicker to a faster tempo song, giving the

user less time to react to upcoming obstacles. Similarly, Crypt’s

protagonist has a smaller window of opportunity to perform an action on

beat with a faster song. Audiosurf (Dylan Fitterer, 2008) further extends

the concept of rhythm games. Its levels are based on music self-selected

by the user who has two objectives, move left and right to avoid grey

blocks and to collect coloured blocks. These tasks alter in difficulty as

the tempo of the song fluctuates. There is also a visual difference during

gameplay, with the colours of the level adapting to the song, allowing

each level to provide a unique experience as dynamic colour scheming is

introduced.

There are, however, exceptions to the rhythm games listed above.

Soundfall (Drastic Games, 2022) provides similar gameplay to Crypt, but

its levels are procedurally generated using features of the music self-

selected by the user, i.e. music genre, to determine the type of level and

volume to determine the number of enemy encounters (Cooper, 2023).

As these features are used in the internal workings of the software it is

3

likely they are not noticed by the player, whereas the use of tempo is

something the player perceives as influencing the game as each level is

played.

The dissertation is outlined below: firstly, existing literature was reviewed

and the way it informed the aims and objectives of the project are

discussed. A requirement analysis expands on these, outlining the

requirements for the project. Then the design methodology of the project

is discussed, describing how the project was managed, the risks associated,

the methodology undertaken, the design and tools used and finally how the

project was tested. Following this the implementation of the project at each

phase is demonstrated, followed by a discussion of the results and a

conclusion evaluating the answers to the research question.

4

1.1 - Aims & Objectives

1.1.1 - Aim

• Investigate key and volume of music in a rhythm game to

enhance player immersion.

To investigate the aim a 2D game was created that utilised a Spotify API

to extract features of a song, such as volume, tempo and key, to affect the

game’s parameters. Two different games were created, one only using

tempo, as in existing games, and the other also incorporating key and

volume. The immersion levels for both games were then measured using

an immersion questionnaire. The objectives derived from this are shown

below.

1.1.2 – Objectives

Objective Number Objective

1 Decide on five different songs

that are musically distinct from

each other, aim to be achieved by

5th November 2023.

2 Formulate a game idea by

examining five rhythm games and

research and establish the

perceived game loop for this

project together with a design

document of 500 words, aim to be

achieved by 19th November 2023.

3 Analyse Spotify API information

and perform MDA analysis of 500

5

words to establish what

mechanics can be created from

this information and their

perceived effect on the user, aim

to be achieved by 3rd December

2023.

4 Identify assets that can be used in

a dungeon crawler game as

outlined in the design document,

aim to be achieved by 10th

December 2023.

5 Create code that utilises the

Spotify API to retrieve audio

information from the five

different songs, aim to be

achieved by 17th December 2023.

6 Link the Spotify API code to

Unity so that a user can choose

from a selection of five songs, aim

to be achieved by 24th December

2023.

7 Using game loop and MDA

analysis, create a game that

utilises Spotify information, aim

to be achieved by 3rd March 2024.

8 Create a second game that uses

only tempo as a game mechanic,

aim to be achieved by 24th March

2024.

6

9 Establish an immersion

questionnaire for both games to

be completed by players, aim to

be achieved by 31st March 2024.

10 Test both games using

observational data from twenty

participants and analyse feedback

to determine how immersive both

experiences are by 28th April

2024.

Table 1: The Objectives for the project

1.2 - Project Implementation

The following suggestions for ways to use musical features to enhance immersion

were implemented. Firstly, music key influences the colours of the game due to

existing links to how key and colour coincide, achieved using the bloom effect in

Unity via Castel’s model, further discussed in the literature review.

Volume/loudness was used to determine the types of enemies spawned in each level

of the game. It was theorised that this would be better perceived by players than the

existing implementation in Soundfall for increased immersion. Finally, a discussion

on how a beat detection algorithm was created, this being used to capture whether

players are on beat, is provided together with the way Spotify’s API was used to

retrieve song information and its interaction with Unity.

7

1.3 - Contributions

This paper makes the following contributions:

• Research indicates that numerous existing rhythm games use only tempo as

a core mechanical feature, however literature indicates that key and volume

are two further ways to heighten the immersive experience. This

contribution is shown in sections 2.2-2.6.

• Two games were designed, developed and implemented based on literature

linking key to colour, emotion and, therefore, immersion, with volume

linked to intensity and immersion. These findings from literature are

implemented in an experimental game, with a control game using only

tempo as a variable for immersion. Implementation is shown in section 5,

with both games shown in Figures 1 and 2.

• Both games were tested by 20 participants, 10 for the experimental and 10

for the control, with a new questionnaire being introduced for this study

blending the IEQ, GEQ with its own questions. Testing is discussed in

section 4.5.

• This data was used to compare both games, with the experimental game

showing a higher mean immersion, tested to be significant, as discussed in

section 6.2.

• The conclusion summarises that whilst there is greater immersion, there are

still areas for improvement or investigation, the full conclusion provided in

section 7.

• A significant finding is that the use of colour in rhythm games may not

enhance immersion through emotional changes, but instead immersion and

engagement are enhanced through visual interest, with justification provided

in 6.3.3.

8

Figure 1: The control game for the song Reckoner

Figure 2: The experimental game for the song Reckoner. As can be seen, there is

now a colour change from the bloom effect, showing a yellow hue. Stronger

enemies are also present

9

Chapter 2 - Literature Review

2.1 - Player Immersion in Rhythm Games

Sections 2.1 to 2.4 have been adapted from the interim report (Byrne, 2024).

There have already been studies surrounding player immersion in rhythm games.

Kagan (2020) analyses how Crypt of the NecroDancer immerses players, noting

how all player actions are linked to the beat of a song. Kagan explains how, in later

levels, enemy patterns become more complex and that, in response, the tempo of

the music slows down to enable players to adapt to these changes. This draws from

game flow, defined by Sweetser and Wyeth (2005, 7) as “The rate at which players

experience new challenges and details can be paced to maintain appropriate levels

of challenge and tension throughout the game”. It should be noted that this concept

applies to more linear games, where new challenges are introduced as the player

progresses. However, most rhythm games, are also linear. As Tsujino (2019, 2)

notes “Players have to have quick decisions and actions for the faster song, it is thus

considered that the faster song is more difficult”, meaning tempo controls difficulty

and thus flow. Furthermore, Kagan (2020, 4) explains how the substages of each

level in Crypt have a linear increase in tempo to match the linearity of flow

occurring once a player becomes familiar with each level. Zheng (2022) further

explored this concept by developing a rhythm fighting game that used different

tempos to measure how the general flow was affected. Zheng found that for certain

characteristics of game flow, such as perceived control, a slower tempo was better

received by players, whilst other concepts, such as balance of challenge and skill,

were not affected by tempo. However, this was related to a style of video game

different to Crypt. It could be that certain game genres better suit changing tempos

to maintain a sense of flow and that therefore a suitable game genre should be

incorporated to analyse the research question.

10

2.2 - Musical feature exploration

Most rhythm games, and the relevant research, focus mainly on the use of tempo as

a gameplay mechanic. However, other aspects of music which could further

increase a player’s immersion such as the musical key of a song or volume, have

not yet been explored.

People associate types of music with emotions. Studies (Lindborg and Friberg,

2015, 1, Barbiere et al., 2007, 1) showed that “happy music was associated with

yellow, music expressing anger with large red colour patches, and sad music with

smaller patches towards dark blue” (Lindborg and Friberg, 2015, 1) and “Brighter

colours such as yellow, red, green, and blue were usually assigned to the happy

songs and grey was usually assigned to the sad songs” (Barbiere et al., 2007, 1). It

is clear certain colours can be assigned to certain kinds of music to invoke emotions

in players and heighten their immersion. Joosten et al. (2010, 5) used different

colours in a video game to examine emotional response and found “that red elicited

a highly aroused, negative emotional response, and yellow elicited a positive

emotional response”. Zammitto (2005, 11) also notes how colours help for “setting

a mood of the world the player would immerse in”. Therefore, colours help to set

an emotional response in the player and are utilised in games to allow immersion in

a certain feeling. According to Zammitto (2005, 12) that immersive feeling could

be “depression, sadness, solitude, loneliness, distance”.

Ciuha et al. (2010, 3) attempts to visualise the colour of particular chords, aka keys,

via a colour wheel, shown in Figure 3. Whilst they admit that no studies have been

undertaken using this wheel, a similar model, developed by Louis Bertrand Castel,

shown in Figure 4, was used by Fonteles et al. (2013) for their particle system. This

attempted to use music visualisation as it “establishes different colours for each one

of twelve musical existent notes” (Fonteles et al., 2013, 3). This was received

positively by “general audience, music students, and music experts” (Fonteles et al.,

11

2013, 7), suggesting that Castel’s model is a better model to use due to experimental

backing.

Figure 3: Colour wheel of keys (Ciuha et al., 2010, 2)

Figure 4: Castel’s colour model (Fonteles et al., 2013, 3)

As with music key, there are studies which investigate the relationship between

volume and emotion. Sloboda and Juslin (2001, 26) state that “loud fast music

shares features with events of high energy, and so suggests a high energy emotion

such as excitement”. Similarly, Blesser (2007, 3) describes how “an aural space

loud music is often experienced as “exciting” because loudness represents intense

activity”. Furthermore, the volume of a song also changes people’s behaviour when

participating in activities such as exercise. Edworthy and Waring (2006, 9) found

that “fast, loud music is particularly effective in increasing speed of running” when

compared to slower, quieter music, with Welch and Fremaux (2017, 5-6) explaining

this behaviour as being “linked to adrenaline, in the colloquial sense of an internal

sense of arousal”, meaning the body is more “alert and active”. Relating these

12

findings to video games, Chanel et al. (2008, 4) report how players experienced an

increase in heart rate as difficulty increased. In their later study this is further

explained as an increase in a player’s arousal (Chanel et al., 2011, 10). These

reactions to difficulty are similar to a person’s reaction to loud music. The

implication, therefore, is that the difficulty of the game should be adapted

accordingly. If a song has louder music, difficulty should increase to induce the

intensity and arousal the user expects. Plans and Morelli (2012, 4-6) also explained

that they procedurally generated music that would “celebrate flow by rewarding the

user with obviously joyous-sounding music”, meaning that if a player is within the

flow state described by Chanel et al., the music can be louder to invoke a feeling of

excitement as Sloboda and Juslin state. Plans and Morelli admit however, that the

userbase this music was tested on was inconclusive, due to a small sample size and

limited responses for the questionnaire. Adapting the difficulty needs to be carefully

considered. Chanel et al. (2008, 1-2) state that, while increasing difficulty can lead

to a positive player experience when “skills of an individual meets the challenge of

a task”, if difficulty is increased too quickly it can cause anxiety, therefore, this must

be taken into consideration when making both games.

2.3 - Colours on Immersion

It is envisioned that the visual component will change depending on the type of song

used. Aesthetic features such as visuals (colours) and sound coexist when

influencing immersion as they both contribute to “enhance the emotions elicited

from the play, support the theme of the game” (Tanskanen, 2018, 33). It is

established that music key affects colour and that colour affects emotions. The

experimental game plans to use music key to change the overall colour of the game

using Castel’s model as it is believed this will provide a more immersive player

experience by influencing mood. This will be achieved by colour grading which has

already successfully been utilised in games to provide differing effects. Kauranen

(2023, 30-31) describes how colour grading used grey colours “to give certain

13

games a more realistic feeling” or use a “green cast…enhancing this ominous

feeling”. Therefore, this technique performs the immersive qualities outlined by

Zammitto, to set an emotional response in the player for greater immersion. This

response is provided by the song key via Castel’s model for the experimental game.

2.4 - Measurement of Immersion

Features of the game will be generated based on song choice. Studies have

hypothesized that immersion increases should self-selected music be used. Fierro

(2012, 32) notes that “Most probably, if people could choose music after their own

taste in the game, the level of immersion of this people could be still higher”.

Cassidy and MacDonald (2009, 18) explored this concept by allowing users to self-

select music in a driving game and comparing performance and player experience

against music Cassidy and MacDonald had selected. It was found that both metrics

were best for self-selected music, further reinforcing Fierro’s hypothesis. Since self-

selected music has been proven to create a positive effect during gameplay, it is

possible its use may create bias in players when testing their immersion. Thus, the

use of music will be restricted to a pre-set selection of songs.

Objectives 9 and 10 state that testing data will need to be gathered from users,

presented in two ways, measuring immersion via a questionnaire and establishing

observational data to determine player engagement. However, both objectives are

currently too vague to truly gauge how to properly measure immersion. Jennett et

al. (2008, 9) defined different ways to effectively determine immersion. For

instance, they measured the number of times a user’s eyes changed what they were

fixated on, with an immersive task having less fixations as the player is more

engrossed in the task, with the inverse true for non-immersive tasks. They linked

these results with an immersion questionnaire to further explain these fixations. The

questionnaire was derived from two prior studies. Firstly, Agarwal and Karahanna

(2000, 10) who propose five dimensions for user engagement and secondly Brown

14

and Cairns’ (2004, 1), which interviewed players to determine what aspects of

games lead to more immersive experiences. These two papers will be studied further

to aid the construction of the immersion questionnaire in objective 9. It should,

however, be noted that Agarwal and Karahanna’s study relates to general software

experiences and not just games. However, some concepts outlined will still be

relevant. It is also possible that certain aspects mentioned in Brown and Cairns’

(2004, 3) study may not be applicable to the rhythm game created. One aspect is

that, to achieve total immersion, a player needs to feel empathy, to “feel attached to

a main character or team”. However, this aspect is more applicable in role playing

games “where the gamers assumed a character” and where detailed stories and

characters emerge, something that is not deemed necessary for a rhythm game.

Other aspects such as atmosphere, where “graphics, plot and sounds combine” are

more important for immersive rhythm game experiences. Grimshaw et al. (2008, 2-

3) used questionnaire data combined with other objective observation data, such as

galvanic skin response, to evaluate the effect of sound on immersion. Whilst all four

studies show effective ways to quantify immersion, it should be noted that they are

all older studies. As games have evolved, the ways in which they are immersive

may also have changed, making certain aspects of the questionnaires used in these

studies outdated. Therefore, whilst the use a subjective questionnaire can help to

explain results from observational data, more research should be done to establish

if these studies are still relevant for today’s gameplay.

15

2.5 - Musical Features and Game Design

An important objective was to analyse five existing rhythm games to help formulate

the design document. These games are mentioned briefly in the introduction: Crypt

of the NecroDancer, Vib-Ribbon, Soundfall and Audiosurf. A final game, Rhythm

Sprout (SURT, 2023) was also analysed. Each game is summarised below.

2.5.1 - Crypt of the NecroDancer

Crypt is a roguelike dungeon crawler, where the player moves their character across

a procedurally generated dungeon to the beat of the song, using the arrow keys.

Every player turn is achieved via the rhythm, meaning when pressing the arrow

keys, a player either moves, attacks an enemy or uses an item. Enemies also move

to the rhythm, with each enemy having its own unique movement pattern. The

player’s goal is to exit the dungeon, usually via the stairs.

2.5.2 - Vib-Ribbon

Vib-Ribbon involves a player automatically moving across a level, avoiding

oncoming obstacles utilising different button presses. The objective of the game is

to survive until the song ends. Players can make a set number of mistakes before

getting a game over. However, if a player does well, they gain more life and,

therefore, more chances. Levels are unique depending on the song with the speed in

which a player has time to react being determined by the song’s tempo.

2.5.3 - Audiosurf

Audiosurf is a puzzle racer where the player aims to collect blocks of the same

colour as they automatically move along a highway. The speed at which the player

16

moves is dependent on the song chosen with the game’s colour also adapting

according to the chosen song.

2.5.4 - Soundfall

Soundfall is also a rhythm-based dungeon crawler. Whilst players are able to move

independent of the music, game actions such as attacking and dashing must be

completed on beat to execute correctly. Levels are procedurally generated based on

music features including using volume to increase/decrease enemy encounter rate.

2.5.5 - Rhythm Sprout

Rhythm Sprout is a rhythm action game where the protagonist moves from A to B

by pressing the left and right arrows in time with the music, attacking an enemy in

the same way when prompted and using the spacebar to dodge attacks. Failing to

dodge results in a loss of life. The speed at which these inputs must be completed is

dictated by the tempo of the song.

2.5.6 - Games Analysis

It can be determined that all five games possess a central mechanic, this being game

difficulty. The faster the tempo in each level, the less time players have to react.

Therefore, it can be determined that tempo is of singular importance in rhythm

games. Most rhythm games tend to have a player “on-rails”, where the player moves

automatically, reacting to oncoming obstacles. Crypt, however, allows players to

move or perform an action only when on beat with the song. Rhythm games have

differing goals, these being survival either until the song ends or until a certain exit

point is reached. Whilst the introduction stated that rhythm games only make use of

17

tempo for game mechanics, it is now acknowledged that games, such as Audiosurf

and Soundfall, also utilise other features. Audiosurf aims to change the colour of

the level based on the given song, whilst Soundfall uses volume to vary enemy

encounters when generating a level. However, it should be noted that these rhythm

games are exceptions to the rule. Whilst Audiosurf does use colour, it is not known

if this is the result of a feature other than tempo. Furthermore, the use of

volume/genre are aspects that are internal workings of Soundfall, possibly not

noticeable to the player. As there is currently little research supporting the

hypothesis that the use of more musical features leads to greater immersion, the

game and questionnaire should be designed to determine if this is the case.

2.6 - Literature Conclusion

Studying the available literature helped to inform the design document for objective

2. Whilst existing research has linked tempo with immersion in rhythm games, there

is a gap in research regarding the other musical features previously mentioned. The

research question therefore aims to determine if incorporating these other features

will help to provide more immersive experiences. There is currently little research

into how music key affects player immersion. However, from the literature

analysed, it can be inferred that key can affect player mood as mention is made of

key being linked to specific colours, with these in turn being linked to specific

emotions. Thus, key can be used in conjunction with colour grading to immerse the

player emotionally. The study by Zhang et al. (2017, 1) states that part of immersion

is emotional immersion, where “the user feels emotionally aroused and absorbed”.

Therefore, it can be assumed that affecting a player’s emotional state by combining

key, colour theory and colour grading in the experimental game will influence a

player’s overall immersion. This will be examined when testing the experimental

game to see if this hypothesis aligns with the research aim. Again, there is little

research on the effects of volume and immersion. However, it has been stated that

18

volume changes a person’s state of mind by making environments more intense and

exciting. Therefore, it can be inferred that immersion will increase by establishing

a more intense scenario in the experimental game determined by the intensity

(volume) of the music. Difficulty and intensity are linked and Ermi and Mäyrä,

(2005, 4) notes that difficulty causes greater immersion as there is “increasing

demand on working memory” of the player, therefore facilitating an intense and

difficult environment will deliver greater immersion. If both the musical features,

together with the way in which they are incorporated into the game, have a positive

immersive effect, these techniques can be applied to the rhythm genre in the future.

19

Chapter 3 - Requirements Analysis

Please note that parts of this section refer to comments made in the proposal

document (Byrne, 2023) and interim (Byrne, 2024).

There are a set number of functional and non-functional requirements that this

project must achieve, outlined in the aims, objectives and literature. The first non-

functional requirement was the creation of the game design document (GDD)

outlined in objective 2. This was informed by the literature review conducted in

both the proposal and interim stages and includes details on how tempo, music key

and volume are utilised.

It is important to create game design documents as they provide a guide to refer

back to throughout the whole development process (Almeida and da Silva, 2013,

2). Whilst there are no common standards detailing how these are formatted

(Dormans, 2012, 59) they are a good way of outlining the initial ideas for a game’s

development, although it is likely there will be changes which deviate from the

initial design document over time (Dormans, 2012, 60).

The static nature of the design document means it can be unproductive to reflect

changes in the design (Almeida and da Silva, 2013, 2). Therefore, even though this

design document was created to outline the core goals and mechanics for the game,

attributes in the final product have deviated from the initial document.

A game loop which helps “identify the core mechanics and to think about how

other activities can support it or allow for variety” (Guardiola, 2016, 6) was also

planned. This helps visualise how the player interacts with the game mechanics

outlined in the design document. objective 2 describes how five rhythm games

were analysed to help facilitate the design document. This was done in the form

of an MDA (Mechanics, Dynamics and Aesthetics) analysis, which as Hunicke et

al. (2004, 2-5) states, helps “consider both the designer and player perspectives”

and helps “reason explicitly about particular design goals, and to anticipate how

20

changes will impact … the resulting designs/implementations”. Therefore, the

requirement for objective 2 is to:

• Create a design document and game loop informed by an MDA analysis and

existing research

A functional requirement for this project will be to enable the user to pick one of

five different songs generating a different type of level depending on its musical

features. The literature review outlines how tempo has already been used in rhythm

games as a metric of difficulty. However, it is believed that the inclusion of new

musical features in the game such as music key and volume will lead to a more

immersive experience. This will be achieved by relating music key to colour and

volume to intensity. Therefore, the game must be able to adapt its parameters

depending on the song chosen, using Spotify’s API to extract song information.

API stands for Application Programming Interface with Lindman et al. (2018, 1)

describing the benefits thus: “provide a useful interface for service provision,

customer access, and third-party development.” The API was used to retrieve the

required information tempo, music key and volume for each song using a Spotify

query called Get Track’s Audio Analysis. The song information is returned as a

JSON file, which is stored in the game. Information from this file must be parsed

into the game to adapt the game parameters, depending on the song chosen. Whilst

any programming language can be used to access APIs, including object orientated

languages such as Java and C# (Nguyen et al., 2017, 1), Python was selected due to

its use as a primary backend in development (Goel, 2021, 5). A suitable game engine

also needed to be selected to parse in the JSON files. The two major games engines

used in the industry are Unity and Unreal. Although other game engines exist, for

those who are “looking to get into game development for the medium or long run

Unity or Unreal Engine are the recommended choices” (Andrade, 2015, 6). Unity

has “a simpler user interface…its installation does not require high-performance

hardware” (Christopoulou and Xinogalos, 2017, 14) whilst Unreal is much more

21

resource intensive and while “its graphics are remarkable” (Christopoulou and

Xinogalos, 2017, 14), the proposal planned to create a 2D game with pixel graphics,

meaning a high-performance game engine was not required. Therefore, a second

requirement was to:

• Create a game that can parse through JSON objects and manipulate the

game’s parameters from the JSON file

Another functional requirement was to create a game where the player can easily

infer that different musical features are influencing the level. As already discussed,

a player can infer that the game’s difficulty is adjusted by the tempo of the game,

as this mechanic has a known effect on difficulty. However, other features proposed,

such as music key, provide a visual effect. Therefore, the game must be able to

adequately communicate these visual changes to the player when changing the

game’s parameters. One study has already discussed developing a particle system

using Castel’s colour model and, as Unity has a particle system of its own (Unity,

undated), this was a potential avenue to explore for visual effects. Another

requirement therefore, is to:

• Create a game that provides feedback to the player on how the musical

features affect the game experience

The last functional requirement(s) relate to objective 7, the creation of an

experimental game. The literature review states how tempo can be used as a game

mechanic and outlines that music key and volume may enhance immersion. These

requirements were unknown until the GDD was created, outlining the core

mechanics and ideas for the game that were not known at the proposal stage. The

requirements for the experimental game were therefore:

• Creation of beat detection algorithm

• Use of this algorithm to allow player movement/attacks

22

• Use of this algorithm to allow enemy movement

• Spawning of different enemies using time signature

• Weapon durability, weapon functionality and weapon spawning

• Use of json file to increase/decrease enemy pool

The beat detection algorithm detects when players/enemies are “on beat” and are

able to move. The weapon durability, functionality and spawning all refer to

mechanics described in the design document. The final requirement relates to the

discussion surrounding how musical features affect gameplay, with louder songs

causing stronger enemies to spawn. objective 8 describes the creation of a control

game. Whilst similar to the experimental game, only a song’s tempo is used, as in

existing rhythm games. These two games will then be tested and their immersive

qualities evaluated to ascertain if the research question has proven correct.

A final non-functional requirement relates to how this project will be tested. The

literature review discussed how more research was required to inform the

questionnaire. Further research discovered that there are two questionnaires that

utilise player immersion, these being the Immersive Experience Questionnaire

(IEQ) (Jennett et al., 2009, 19-20) and the Game Experience Questionnaire (GEQ)

(Brockmyer et al., 2009, 4). As Nordin et al. (2014, 6) notes, the IEQ has been used

in many studies, i.e. a study comparing the immersion of a game with/without music

(Sanders and Cairns, 2010, 4) and provides a greater range of accuracy by using

positive and negative statements (Nordin et al., 2014, 6). The GEQ measures player

engagement, incorporating immersion and flow as components. Brown and Cairns

(2004, 2) mention engagement as important in facilitating immersion. The IEQ

should therefore be adapted to include further questions from the GEQ relating to

engagement, to better understand how immersive experiences are created in the

game. However, Denisova et al. (2016, 4) notes that some questions in the GEQ are

not applicable to all genres, i.e. for a rhythm game, the GEQ question “I feel scared”.

Also, some questions in the GEQ are too vague i.e. “I feel different”. This question

23

could be adapted to relate to the experimental game, for instance, did a user feel

their emotions changed during the game. Therefore, a final requirement is to:

• Create a questionnaire that adapts both the IEQ and GEQ to relate to the

experimental game to measure player immersion.

24

Chapter 4 - Design & Methodology

4.1 - Project Plan

A Gantt chart in Figure 5, taken from the project proposal, outlining when each

objective should be achieved and the estimated time each would take was created.

Figure 5: The finalised Gantt Chart, showing all stages of development (Byrne,

2023)

Certain objectives in the Gantt chart have changed. The Concept Development

phase originally stated that an optimal number of songs would be researched.

However, this conflicted with objectives stating five songs were to be used.

Therefore, musically distinct songs were researched, while the find/create assets

now relate to identifying a suitable asset pack for the game (Byrne, 2024). It should

be noted that Gantt charts normally visualise the waterfall software methodology

(Karlesky and Vander Voord, 2008, 1). However, a pure waterfall model is not

advised in the industry due to games needing multiple iterations (Kanode and

Haddad, 2009, 1) with agile methodologies such as SCRUM being implemented

25

instead. Agile practices have been adopted 10% more often in games compared to

waterfall with advantages including designers not being required to wait for a

particular feature implementation (Kristiadi et al., 2019, 3). Agile is specifically

favoured due to its flexibility in handling changeable game design processes and

allowing developers more influence on the design (McKenzie et al., 2021, 5).

SCRUM can be split into three phases: the pregame, game development and

postgame phases (Kristiadi et al., 2019, 3), represented in the Gantt chart as the

Concept Development (pregame), the Experimental and Control Game Creation

(game development) and finally the Testing (postgame) phases. Furthermore, the

use of SCRUM is an iterative model, where clients (i.e. playtesters) review each

stage of the game build so that changes can be implemented in the next phases of

development (Kortmann and Harteveld, 2009, 5). SCRUM consists of multiple

sprints implementing aspects of the backlog, these being the features required for

the game, with any changes needed added to this backlog for the next sprint

(Schwaber, 1997, 14-15). Kristiadi et al. (2019, 5) recommend following the three

phases outlined above, in conjunction with the game design document as it “reveals

the goals and also all things that will be needed in both planning and development

later” meaning that the backlog for SCRUM is first defined in the Concept

Development document. SCRUM was therefore determined to be the optimal

methodology for this project being common in the industry and beneficial to the

game design process.

SCRUM is attributed to be the main workflow for the creation of game mechanics

and features (McKenzie et al., 2021, 5), whilst other agile practices such as Kanban

are better employed for asset creation, such as art or levels which are “predictable

and steady” (McKenzie et al., 2021, 5) compared to game mechanics. However, as

a pre-existing asset pack is used, the need for Kanban to develop art assets is cut out

completely, therefore only SCRUM is required for the overall project as only game

26

mechanics needed development. The results of each iteration of SCRUM for the

Experimental Game Creation is shown in Chapter 5.

4.2 - Risk Analysis

Risk Likelihood Impact Mitigation

Client secret is

exposed

High Client secret

together with

client ID are

needed to

access the

Spotify API.

However, if

client secret is

exposed then

there is the

potential that

outside users

could attempt to

access the

Spotify API

pretending to be

the user and so

manipulate the

account’s

access to the

API. Since it is

planned to use

GitHub, which

is a public

Keep the

GitHub repo

private so that

no other GitHub

users can access

the repo or use

other, less

public, file

storages like

OneDrive.

27

software, there

is a potential the

client secret

variable could

be viewed by

others. This is

more of a

concern for the

researcher who

will need to

keep themselves

protected from

potential access

violations

Performance

issues from

music features

High Spotify’s API

returns a JSON

file that is

broken into

different

segments. This

means there is

the potential for

tempo shifts,

key shifts etc.

between

segments. An

update check

for any changes

between

segments will

As HDRP is

more memory

intensive URP

should be used

instead. If

changing colour

via script for

post-processing

is too intensive

for each

segment, then

the average key

for the song,

provided by

Spotify, should

be used instead,

28

be required

together with a

response if a

change is

detected. Since

it is planned

that key will

affect colour,

this will involve

post processing

in Unity using

either URP or

HDRP which

could be

memory

intensive to

manipulate in

script.

which should

still invoke an

emotional

response for

immersion

measurement.

29

Potential

disparities in

skill

High As mentioned

in the literature

review, flow

and immersion

tend to be

linked, usually

when the skill

level of the

player matches

the difficulty of

the game. In

rhythm games

this has

traditionally

been achieved

by gradually

introducing

songs of higher

tempo thus

creating

increased

difficulty. As

this project

aims to use

different songs,

there is the

potential that

the differing

tempos may

alienate users

Ensure that

there are

different songs

to match the

skill level of

different kinds

of players, from

less to more

experienced.

This could mean

starting with a

slower tempo

song and

gradually

transitioning to

faster tempo

songs.

30

unfamiliar with

rhythm games.

Potential

sickness in

participants

High Since the game

is using colour

grading with

the idea that the

colours will

change as the

key of the song

shifts, there is

the potential

that sickness,

such as

epilepsy, may

be induced in

certain

participants.

(Parra et al.

2007, 1-2)

Ensure that the

researcher is

present in the

test space and

able to stop the

experiment

should a

participant start

to feel unwell.

Ensure this is

highlighted as a

potential

problem to any

interested

participants.

The colour shift

feature could be

31

optional for

those who are

uncomfortable

with this setting

as its removal

will not affect

gameplay.

Poor

performance

data/immersion

questionnaire

Medium There is the

potential that

the

questionnaire

does not contain

sufficient

information or

pose enough

questions

relating to user

experience and

so participants

do not provide

sufficient data

for proper

evaluation.

Similarly, the

Look at existing

literature

surrounding

how immersion

is measured and

use this

literature to

create a similar

immersion

questionnaire

32

data used to

evaluate player

performance

may not prove

to be relevant to

the study of

immersion.

Therefore, there

is the potential

that testing has

been completed

but no usable

data is returned.

Disconnect

between music

and game

Low Spotify’s API

returns a JSON

file containing

averages of a

song’s tempo,

key etc. for both

the song as well

as for segments

of the song.

Using the

average for the

song could

potentially

create problems

should there be

a particular

segment of the

Rather than

using the

average for the

song as a whole,

use the segment

information

instead and

ensure that the

game will

update correctly

as soon as there

are any

differences

between

segments.

33

song that is

faster than the

average tempo

of the song.

This therefore

disrupts the

sense of flow a

player will

experience and,

consequently,

negatively

impact

immersion due

to the link

between the

two. The

experimental

game also uses

key and volume

and therefore

these features

are also variable

throughout the

song.

Table 2: Risk Analysis Table (Byrne, 2023)

34

4.3 - Design

4.3.1 - Concept Development Phase

It was decided to model the experimental game on an existing rhythm game

analysed in the literature review. Crypt of the NecroDancer was chosen due to its

easily understandable game loop and the ease of finding assets suited to its genre,

with asset justification discussed in section 4.3.2. It was also discovered that other

genres of games, i.e. the fighting game developed by Zheng, worked better for

slower tempos. As the songs from objective 1 had similar tempos to those in Crypt,

it was felt that this genre was the most accommodating for the research question.

The goal has been amended so that the player survives until the song ends, similar

to existing rhythm games allowing the player time to notice if the experimental

musical features are affecting immersion. The creation of the game itself is

discussed in Chapter 5.

It was important to develop both an MDA analysis, game loop and GDD for the

Concept Development Phase, with the justifications for these outlined in Chapter 3

together with an explanation on why the GDD did not change after the interim. The

GDD details ways in which key and volume are used, derived from the literature

review. Key visually changes the colours of the game due to colour influencing

emotional responses, whilst volume causes harder enemies to spawn when louder

songs are chosen facilitating a more intense environment, with rationale for these

features discussed in Chapter 2. The results from this phase are shown in

Appendices A-C.

Fullerton (2014, 197) states the importance of prototyping to test the feasibility of

the game idea and make improvements, similar to how SCRUM can incorporate

changes to the game build. Prototyping is specifically concerned with the

fundamental mechanics, for instance moving to the song’s tempo. Prototypes are

35

either physical or digital, with physical prototyping typically created from “paper,

cardboard and household objects” focusing purely on gameplay rather than

technological aspects like code and, as it is cheap, allowing for multiple iterations

(Fullerton, 2014, 197-198). However physical prototypes have downsides. They are

only suited to certain styles of games, namely turn based systems (Neil, 2012, 4-5).

Also, the core loop of the game relies on beat detection for mechanics such as player

movement and, therefore, requires that the developer is able to detect beats.

Generally, it is difficult for people to detect rhythm and therefore when they are “on

beat” (Povel, 1984, 5) so it is felt that this concept is better realised in code. Fullerton

(2014, 236) recommends creating digital prototypes for concepts not easily

modelled physically, still allowing for testing core mechanics, alongside modelling

aesthetics such as sound effects or art (Fullerton, 2014, 238). Therefore, the

implementation of the game in Chapter 5 shows the iterative process of digital

prototyping, testing code to generate beat detection and aesthetic ways to

demonstrate the music key, using a SCRUM development process to test each game

concept.

4.3.2 - Game Assets

An asset pack was sourced from the Unity Asset Store, as outlined in the interim

report, to create a dungeon crawler rhythm game, established from the Concept

Development stage. The pack is included in the references section of the dissertation

and was chosen as, whilst designed for a game called Vampire Survivors (Poncle,

2021) it was felt the style of Vampire Survivors was similar to Crypt, both being

2D, pixel art games with roguelike elements. It was important to ensure that the

assets chosen could be used to create a similar feeling game to Crypt. Both

developed games incorporate similar gameplay to Crypt, i.e. players only moving

or attacking whilst on beat and as the controls emulate Crypt, players who have

already experienced good flow in Crypt, i.e. the mastery of the controls in the game

(Cowley et al., 2008, 14) will readily take to both games. As “games can be a self-

36

referential media” (Cowley et al., 2008, 15), meaning that both games are

referencing Crypt’s prior game mechanics, the player themselves will be “familiar

with the genre and its conventions” (Cowley et al., 2008, 15) allowing for the easing

in of gameplay.

As a roguelike game was being created, it was important to incorporate certain

concepts that feature heavily in the genre, including: loss of all progress on death,

turn based gameplay in a grid-based structure, an inventory system with only a

single character to control and allowing the player to discover how new items work

(Izgi, 2018, 13), to further familiarise players about the game’s genre. Some of these

are subverted by Crypt, for instance the turn-based system usually means that once

a player moves, the enemies move, however in Crypt movement is solely dictated

by a player moving in time with the beat, with enemies moving to a set number of

beats (with separate attack patterns).

4.3.3 - Front and Back End in Games Design

Back-end relates to the use of tools such as Visual Studio 2022, with Koleva et al.

(2015, 4) describing the back-end as “creating the underlying resources”, such

resources including the development of the beat detection algorithm described in

Chapter 5. The Spotify API used to influence the game parameters is itself

connected to a backend system when called (Biehl, 2016, 199). Front-end

development normally relates to web development, with many libraries and toolsets

utilised for this purpose (Dinh and Wang, 2020, 2) however Koleva et al. (2015, 4)

describes front-end as “coding in the interactive elements” relating to UI

development (Xing et al., 2019, 2). Games UI includes utilising components such

as Canvas in Unity. This contains information such as text describing the game state

or current weapon, similar to how information heavy games such as Massive

Multiplayer Online (MMOs) have text panels that contain game instructions (Llanos

and Jørgensen, 2011, 2). However, other information can be conveyed as juicy

37

feedback or greater polish, based on game actions, discussed in greater depth in

Chapter 5.5, with the use of such feedback causing a higher sense of immersion

(Llanos and Jørgensen, 2011, 2). Juicy feedback are general features in the games

industry and are incorporated here to keep a player engaged in both games and

prevent boredom in flow.

4.4 - Toolsets and Machine Environments

To create the artefact the following toolsets have been used: Unity version 2022.3.1,

Python and C# with Visual Studio 2022, Spotify’s API, Chocolatey and ffmpeg and

finally GitHub Desktop for version control. Unity and Spotify’s API have already

been discussed in Chapter 3, with C# being utilised as the default language used by

Unity. A further discussion is shown below on other software used in the project.

4.4.1 - Chocolatey and ffmpeg

As the Spotify API only returns song information and not a file to play the song, the

researcher’s own iTunes library was utilised to provide the audio files required for

the game. However, an issue was discovered using this method. Song files in iTunes

exist in an .m4a format, but Unity does not accept this audio format, instead using

formats such as .wav or .mp3 (Unity, undated). Therefore, software to convert the

.m4a file into a .wav file was required. Wav was preferred to mp3 as “acoustic

research should ideally be made in a lossless format” (Fuchs and Maxwell, 2016, 1)

as provided by .wav. Whilst the research is not acoustic based, audio is a

requirement for the game and therefore it was felt that the best quality audio should

be implemented. The software used was ffmpeg (2000), as audio conversion can

occur in a single line in command line and has been used in existing softwares such

as VLC media player and browsers such as Google Chrome for audio playback

(Hock and Lingxia, 2014). Installation was achieved using Chocolatey, (2011)

38

advertised as a package manager used by Windows that also runs on command line

with its use shown in Figure 6. However, in this case the command line is used to

install packages like ffmpeg. Figure 7 showcases the process of using ffmpeg.

Figure 6: The use of Chocolatey to download ffmpeg

Figure 7: The use of ffmpeg to convert a .mp4 to a .wav

4.4.2 - Version Control

Version control is required in the software engineering process as it helps to manage

and organise the files and revisions that occur throughout the software development

process. It prevents potential risks when saving copies of code such as erasing the

wrong file (Zolkifli et al., 2018, 2) which could occur when uploading to cloud

storage i.e. OneDrive. Additionally, version control software has been implemented

in project-based learning to good effect, offering greater professional skills, and

cooperation with others (Milentijevic et al., 2008, 8, Glassy, 2006, 6). The most

popular version control system is Git (Hultstrand and Olofsson, 2015, 8) which

exists either as a command line or with a UI in GitHub Desktop. Both versions work

by uploading and updating code to an individual repository. Hultstrand and

39

Olofsson (2015, 29-31) found that novice users of Git preferred to have the GUI,

such as GitHub Desktop. It is also utilised by more experienced users, albeit less

frequently and in combination with the command line. There are several issues with

Command Line Interfaces (CLI) as described by Sampath et al. (2021, 5-6). CLI is

difficult to navigate with tasks such as scrolling being considered painful by

developers. CLI manuals are also not easy to read as users cannot skip to headings

or skip sections as with a front-end webpage. Therefore, due to the less accessible

nature of a CLI, the GUI Git offers was adopted as it is considered more user

friendly.

4.5 - Testing

In Chapter 3 it was determined that a suitable questionnaire was required that

adequately encapsulated if an experience was immersive for players. This

questionnaire was adapted from the IEQ, which has been incorporated in many

studies analysing immersion, with certain questions adapted from the GEQ.

Furthermore, as this study is evaluating whether the use of new musical features

affects player immersion, new questions have been formulated specifically to

evaluate these features, i.e. the questions “Did you ever notice any differences

during gameplay?” and “Did the game feel intense?” as the results from these

questions determine if the player detected that volume was contributing to

gameplay. Furthermore, the question “Did you feel emotionally different when

playing the game?” establishes whether the use of different colours relating to key

was recognised by the player, eliciting a positive response if true. Finally, the

questionnaire includes a space for detailed participant comments allowing them to

expand on their experience. This “allows respondents whose feelings and thoughts

are aroused by the questions to express themselves in their own way” (Phellas et al.,

2011, 13) and should provide more detail why players were/were not immersed. The

questionnaire is provided in Appendix D.

40

The majority of this data is quantitive, using likert scales between 1-5 in order to

establish the user’s immersion. Nordin et al. (2014, 6) explains that the IEQ is

computed thus “The overall score is composed of the summary of the results from

the positive questions, as well as the inverted results of the negative ones”. Taking

the Thompson et al. (2012, 3) study as an example, the mean is calculated by adding

the results from all questions (inverting negative questions) to get the total

immersion and dividing this by the total number of participants.

The hypothesis that “players should be more immersed in the experimental game

than the control game” will be verified by first detecting the difference between the

mean values for both games. To determine if there is general significance between

the two groups, a t-test will be used using the difference of the experimental and

control means (Smucker et al., 2007, 1-2). Significance therefore determines that

the results are not down to chance or error and thus having “inherent noise”

(Smucker et al., 2007, 1) but instead indicates that there is a link. Note that the t-

test assumes data exists in a normal distribution and is independent from one

another. A normal distribution can be observed by mapping a histogram of the data.

Again, taking Thompson et al. (2012, 4) as an example, total immersion score is

mapped on x and y maps the frequency of a particular ordinal value, shown in Figure

8.

41

Figure 8: The histogram created by Thompson et al. (2012, 4)

Should a normal distribution not be observed, as in Thompson et al.’s (2012) study,

a different significance test, such as a Mann Whitney U test which assumes no

normality is required. Therefore, the significance test will not be officially adopted

until it can be adequately assumed that both sets of data are operating under normal

distributions.

In the objectives it was established that observational data should be used as well as

the IEQ to help determine immersion, being achieved in the literature review via

examples such as galvanic skin response. However, the use of such equipment is

normally reserved for studies relating to nervous activity, for instance, lie detection

(Sharma et al., 2016, 1). Instead, metrics related to the game, such as the number of

times a beat is successfully hit, the number of times a player dies in the game and

the player’s final score will be measured. Although these metrics relate more to how

“easy” the player finds the game, it should be noted that these can be used to explain

immersion, a higher score meaning greater flow due to mastering the game

mechanics (Sweetser and Wyeth, 2005, 9). Furthermore Jennett et al. (2008, 13)

mentions that a game that is “too difficult…leads to too much anxiety” and is less

immersive, further collaborated by Qin et al. (2010, 1) who discuss that immersion

42

is lessened if game difficulty changes are too slow or too fast or if difficulty

decreases then increases. Therefore, if a player is dying or missing beats too often

the game’s difficulty has progressed too fast. Likewise, if the player does not die as

often then the game difficulty is not increasing fast enough leading the player to the

boredom state of flow. A mean score for each song in both the experimental and

control games will be calculated from all participant data.

4.5.1 - Procedure

20 participants were recruited for this study, the same number as Thompson et al’s

(2012, 3) immersion study. 10 played the experimental game whilst 10 played the

control game. Participants were sat in one of the university laboratories and assigned

a PC with either the control or experimental game loaded, with no knowledge as to

which version was played. A brief explanation of how the game is played was

provided. So that all songs are evaluated for their tempo, key and volume, the player

was asked to play each song for at least 2 minutes, with the escape key being used

to exit the song. After each song was played, the participant was then asked to

complete the questionnaire in Appendix D. Participants were recruited from the

university by advertising the study in various game lectures and workshops. A

participant information sheet, reference number and consent form detailing all

information required for participation was provided. The reference number for each

participant was recorded on each questionnaire allowing complete anonymity. No

sensitive information was stored, however contact details for the researcher were

provided in case any participant decided to withdraw from the study prior to May

9th. Observation metrics were also recorded for each participant during each level.

After all tests were completed, the mean score for both the immersion

questionnaires together with observational data was calculated. The set up for this

experiment is shown in Figure 9.

43

Figure 9: The workspace for participant testing, showing the control game on the

left monitor screen for players to interact with

44

Chapter 5 - Implementation

This chapter reviews how objectives 5 and 6 were implemented, discussing the

utilisation of Spotify’s API via Python and how it was linked to Unity, how the

GDD, game loop and MDA Analysis, formed from objectives 2 and 3, were utilised

to create the experimental game for objective 7. Also included is the implementation

of the beat detection algorithm for tempo, present both in the control game for

objective 8 and the experimental game. Details of how music key and volume were

implemented are also outlined. Any further changes to the game are discussed in

the playtesting and polishing section. These changes relate to player feedback

utilised to refine the game before official testing began. Table 3 summaries the

subsections. Flow is mentioned throughout this Chapter, being a core game design

concept that, when executed successfully, helps facilitate immersion (Sweetser and

Wyeth, 2005, 10). Poor game flow leads to less immersive experiences. Therefore,

the flow between the control and experimental games should be similar as a

controlled variable. All experimental game requirements follow an ABC sprint

(Alpha, Beta, Completion) for SCRUM, described by Kristiadi et al. (2019, 4), the

alpha stage implementing the basic functionality from the backlog, the beta stage

implementing the feature complete game from the alpha with “final assets” and the

completion stage removing bugs and adding polish. The alpha and beta stage are

implemented simultaneously in sections 5.1-5.3.4 as these sections implement the

basic functionality alongside the final game features. The completion stage is

incorporated in 5.3.5, with the backlog for this created from playtesting. Any full

code not disclosed in the appendices can be found in the GitHub repository in the

abstract.

45

Subsection Summary

5.1 Implementation of Spotify API A discussion of how a Python program

was created to obtain the song

information required for this project.

5.2 Spotify and Unity A discussion of how the Spotify API

was incorporated with Unity for this

project.

5.3.1 Beat Detection Algorithm A discussion of the beat detection

algorithm, which is used to determine

when a player is “on beat” with the

tempo of the song and the different

variants to attempt this.

5.3.2 Key and Colour Implementation A discussion of how colour and key

linked together and the various ways to

visualise this in Unity, i.e. via post

processing, a particle system, and

finally, background colour.

5.3.3 Volume and enemies A discussion of how enemies are

spawned using volume in the game

together with how enemies are

attacked.

5.3.4 JSON files and Unity As Spotify’s API returns a JSON file

this subsection describes how the JSON

46

files were parsed through to the game

and how this information was utilised.

5.3.5 Polishing and Playtesting This section relates to any polishing

features used in the game together with

the ways playtesting feedback was

incorporated. This section discusses

concepts such as “juiciness” as well as

game flow.

Table 3: Subsections of Chapter 5

5.1 - Implementation of Spotify API

When developing both games, an important requirement was to successfully

develop Python code to access the Spotify API, returning relevant song

information for the game. When developing the API, it is important to first

authenticate that the user accessing the API has authorisation. Unauthorised API

accesses can lead to cyber-attacks, such as DoS (Denial of Service) attacks, when

the API receives a sudden influx of traffic (Madden, 2020, 3). It also prevents

spoofing by ensuring that the person performing the operation is the actual user

themselves (Madden, 2020, 9). API authorisation works as follows. The Python

code requests access using a client ID and client secret, where client ID refers to

the unique identifier of the app (Spotify, undated) and client secret refers to the

key that authorises API calls (Spotify, undated). It is vital that this key is kept

hidden. Lu (2014, 2) explains that, if an unauthorized user gets a hold of this key,

they have free reign to perform API actions and it’s likely that DoS attacks will

occur. However, as mentioned in the risk analysis, the Python project is currently

set to private to prevent this. Once the client ID and secret have been sent to

Spotify, Spotify returns an access token (Spotify, undated), allowing the Python

47

program to send requests (queries) to the API. The code which handles

authorisation and returns an access token is shown in Figure 10, whilst the

workflow for authentication is shown in Figure 11.

Figure 10: Python code to create an access token that will be used by the client

credentials workflow

48

Figure 11: Spotify Client Credentials Workflow, used to generate the JSON files

for the project (Spotify, undated)

Note that an access token for Spotify only lasts for an hour (Spotify, undated)

and is defined as “a system where a physical object (token) is used to access

some digital information stored outside the object” (Holmquist et al., 1999, 5).

In this case the digital information is the access to song information. In order to

generate the access token, the request to Spotify must be encoded in the form

“application/x-www-form-urlencoded” and the data itself is sent to the url

https://accounts.spotify.com/api/token. The request for the access token must be

formed as follows: it must include the token url, a header object containing the

type of authorisation, the encoded form and finally the grant type, relating to the

client credentials workflow.

https://accounts.spotify.com/api/token

49

After the access token is generated, it is then used to access information from

Spotify. This was tested using two API queries described in Figure 12.

Figure 12: Code to find artist and get top songs by artist

The access token creates a new set of headers, which are utilised to authorise

access to Spotify when sending the constructed query. The function artist_search

tries to find the particular artist specified by the artist_name string, in this case

AC/DC, and returns the artist ID. This is returned as the query obtaining an

artist’s top tracks requires the artist ID. When searching for an artist, a new url

is constructed containing both the url for searching and a formatted string

containing the artist to search for, with a limit of how many artists to return, in

this case 1. This returns a JSON file that is converted to a dictionary using

json.loads() and shortened to only contain the item’s header, as this contains the

information relating to the artist themselves, including the artist ID. When this

JSON object is returned, the artist ID is stored individually by returning and

storing the value from the ‘id’ dictionary key. This ID is used in a separate

function that constructs a query to search for the artist’s top tracks, resulting in

the output in Figure 13.

50

Figure 13: The returned songs JSON file for the artists AC/DC

Having confirmed that the code works, it can now be adapted for the purposes

of the project: to extract song information for tempo, key, volume to utilise in

both the experimental and control games, shown in Figure 14. Most of the code

is unchanged, however the query for searching is now adapted to search for a

specific track. A further query uses the track ID to generate a JSON file

containing the audio features described above (Spotify, undated).

Figure 14: The code for get_track_id and get_track_information

Note that artist_name and artist_song are user inputs and that the search query

looks for the specific song relating to the specific artist, as the song name alone

is insufficient.

Also note that rather than printing the dictionary of the JSON file, a new JSON

object is created using json.dump(). Although the file is called “musicdata.json”,

the file name will be rewritten as song_name.json after creation when using the

51

files in the experimental game, preventing the same file being overwritten.

Admittedly the file name could instead have been formatted by creating a string

variable that compounded the strings “artist_song” and “.json”, with this passed

to open() to store the information, although for 5 songs manually changing the

file name had negligible efficiency penalties. The information generated for the

song Reckoner by Radiohead is shown in Figure 15.

Figure 15: The track information for Reckoner by Radiohead, including loudness

and tempo

5.2 - Spotify and Unity

Early in development, an attempt was made to link the Spotify API code developed

to Unity, utilising the InputField UI component to input the song and artist the

player wished to listen to. These variables are passed through to the Python code

and uses the get track audio analysis query, returning a JSON file to be accessed by

Unity which has built in tools for parsing JSON (Bueno, 2017, 31).

A package called Python Scripting (Unity, undated) was utilised for this

functionality. Rather than using a .env file as in the Python implementation, the

client ID and secret were instead placed in the Python file itself, although this does

mean the client secret is shown more prominently. To load in the artist and song

required to generate the track information, the artist and song names are passed as

a JSON object, which is loaded as a Python dictionary and stored in the relevant

variables. However, whilst the two InputField variables are able to be converted into

a JSON object using the Unity function JsonUtility.ToJson, there were issues

52

accessing the Python file in Unity. Firstly, the requests library that handles API

queries, needed installation in the Python code. When installing the requests module

for use with Python only, the package ran with no issues. However, as the

requirement is for this module to run in Unity, the requests package must be

installed in a different location to allow Unity access. A requirements.txt file using

the command line function “pip freeze > requirements.txt”, must be generated

containing the external libraries/packages that the Python project requires. Unity

needs this .txt file for the Python Scripting package and it must be stored in the

ProjectSettings folder. Although this method should allow the Python code to run

successfully when playing the game, the decision was taken to abandon this method

of generating the JSON files.

This was initially due to confusion as to why the Python file was not running in

conjunction with Unity. When attempting the generation of the JSON file, an error

occurred stating that the requests module could not be found. However, when using

the Python file outside of Unity, the code ran successfully. It was not discovered

why this initial process had failed until later. As the literature review had also found

that the use of custom music could lead to bias in how a player may feel immersed,

it was decided to limit the user to a selection of pre-selected songs, with the JSON

files for these being generated using the pre-existing Python code running

independently from Unity. The created JSON objects are transported to Unity and

assigned to a button UI component, which parse the JSON file into Unity adjusting

the parameters of the game.

53

5.3 - Experimental Game Development

5.3.1 - Beat Detection Algorithm

The key aspect for both games was to implement a beat detection algorithm to allow

users to move within the tempo of a song, this serving as one of the most crucial

mechanics in Crypt. Rhythm games work by ensuring “a player … translate visual

and auditory cues into actions and perform them at appropriate time and in rhythm”

(Lin et al., 2011, 2). To be in time with the rhythm means being within the song

tempo, defined as the beats per minute (BPM) (Schacher, 2007, 1). To ensure that

the player is in time with the tempo at every second, the BPM must be converted

into beats per second. As the reaction time for auditory stimuli is around 284

milliseconds (Shelton and Kumar, 2010, 1) there needs to be some leeway allowed

for the player in case they move too early/late. As most of the game mechanics

incorporate the song’s features, it was decided to use a singleton, defined such that:

only one instance of this class exists at any time, that the instance of the class is

reusable and they are usually static and public, allowing all game objects to access

the class (Stencel and Węgrzynowicz, 2008, 5). The initial creation of the singleton,

defined as GameManager, is shown in Figure 16.

54

Figure 16: The first implementation of the GameManager singleton

A timer has been created, incremented by Time.deltaTime, indicating the interval

in seconds from the last frame to the current frame (Unity, undated). The secPerBeat

variable relates to the beats per second and the update loop checks to ensure that, if

the player is slightly too late (less than 0.1 meaning that they just missed the beat),

or hit the beat exactly/slightly before, when a key is pressed, then the player is “on

beat”. Otherwise, the player has missed the beat. The main issue when using

Update, is that it is non-deterministic, meaning that the number of times Update is

called per second is not always consistent; it could be called 60 times one second

and 62 times the next (Aversa and Dickinson, 2019, 32). This could lead to

performance issues when using Time.deltaTime as a valid input could be misread

as false. Also, depending on the optimization of the project, i.e. if there is any

memory overhead, this can directly affect the performance of Update (Nusrat et al.,

2021, 7-8) and therefore affect the beat algorithm’s performance. As the

FixedUpdate() method in Unity has a fixed value of 20 milliseconds, or 50 updates

a second and never varies (Dickinson, 2017, 156) the decision was taken to rewrite

the singleton class to adapt to FixedUpdate().

The second attempt at the beat detection algorithm was developed in conjunction

with the player and enemy movement scripts, with functionality adapted from an

55

existing GitHub repository (JJMaslen, 2024), again utilising the FixedUpdate loop.

However, as FixedUpdate is set to 50 frames, rather than the theoretical 60 frames

of Update, the beats per second must be converted for FixedUpdate(), shown in

Figure 17.

Figure 17: The code to convert the bpm for FixedUpdate() using the function

bpmConversion()

The full FixedUpdate() code is shown in Figure 18.

Figure 18: The FixedUpdate() code for the second beat detection implementation

56

A timer variable increases by 1 for every call to FixedUpdate() with a count variable

used to check if the player is exactly on beat. If the modulus operator returns 0, then

the player is confirmed to be in time with the music. If the modulus returns a value

that is slightly above 0 (late input) or slightly below the value of the beat variable

(early input), these are also counted as acceptable inputs. Otherwise, the player

cannot move as they are not within beat. A new variable, onBeat, has been created

to notify all game objects when they can move. As the singleton is static, its

variables are constant when two different game objects access the onBeat variable

and therefore notifies when the player/enemy can move, as shown in Figure 19.

Figure 19: The use of onBeat for player movement, when onBeat is true the player

is able to move

As an enemy could move at any point when onBeat was equal to true, the beatDone

variable was created informing enemies they can only move once a full beat had

elapsed. However, issues became apparent during playtesting. The game appeared

to reject valid inputs that were in rhythm, causing beat detection to feel random.

Therefore, a core aspect of flow “the ability to exercise a sense of control over

actions” (Sweetser and Wyeth, 2005, 3) was not being realised. Johnson (2015, 7-

8) notes that in the game Steel Battalion: Heavy Armor (FromSoftware, 2012)

players often had inputs that did not perform their expected action, leading to a lack

57

of control which renders overcoming challenges as unrewarding as it involves

overcoming a physical challenge from controls and not an in-game challenge. If the

player only feels challenged from aspects outside the game, as in the current

implementation, this means they are focusing on aspects outside the game and are

not immersed. Therefore, the decision was taken to switch back to Update, as the

previous concerns outlined above were considered negligible. It is highly unlikely

that there will be significant memory overhead as the creation of the 2D game is not

memory intensive and, whilst the number of loops in Update is not always 60, the

lack of overhead means the performance of Update should be reliable enough for

this to not be a concern. Furthermore, as the same computer is planned to be used

during testing, the rendering and processing power should be consistent for each

participant.

Figure 20: The beat detection algorithm configured to the Update() loop

In Figure 20, the code reverts back to using Time.deltaTime as in Figure 16. A

double is used to check whether or not the player is within beats per second. As the

value returned from bpmConversion() is a double, there was a possibility that the

earlier iteration may have lost precision when converting to an integer (Lindholm

et al., 2013). Furthermore, rather than checking if, for every call, a value divides

58

cleanly with no remainder to determine if a player is exactly on beat, the Update

loop instead determines that a beat cycle is performed if the timer value exceeds the

beats per second.

However, despite these modifications, the same issue still occurred. As with the

FixedUpdate() loop, the player does not feel in flow as it was hard to determine

when they could move. It then became apparent that the issue was not because the

player was not in time with the music, but because there was no visual cue. As

already discussed by Lin et al., a rhythm game works by utilising a combination of

visual and audio cues at an appropriate time, that being the period in which they are

“on beat”. Currently the player is relying solely on an audio cue, to detect when

they are “on beat”. However, as previously discussed, the audio reaction time is 284

milliseconds, meaning a player may always be slightly off beat when detecting this

audio cue. For instance, for a 120 BPM song, the beats per second corresponds to

0.5. Should the reaction time in seconds be used for a margin, the player could be

“on beat” in the following conditions: Player input < 0.284 or Player input > 0.216.

Both these conditions overlap, meaning players can always move, meaning the

margin must be less than the audio reaction time. It was therefore decided that a

visual cue was needed to help the player sync to the BPM, which exists in Crypt.

Furthermore, Bégel et al. (2017, 4) noted that, in 27 rhythm games analysed, “most

of the games…consists in reacting to visual stimulations” implying that visual

communication is a standard in rhythm games. A final version of the beat detection

algorithm is shown in Figure 21.

59

Figure 21: The completed beat detection algorithm in Update()

A new game object has been assigned in GameManager which is a slider UI

component, shown in Figure 22. If the player can move, this slider component is

green, otherwise it is red. The colours were selected for the following reasons.

Firstly, red is a colour with normally a negative association (Gil and Bigot, 2016,

1), i.e. danger (Pravossoudovitch et al., 2014, 2) whilst green is normally more

positive, i.e. safety (Mammarella et al., 2016, 2). Therefore, applying these colour

associations to the slider should help a player to understand when they can move,

ideally easing players into the rhythm cycle. Costello (2018) defines rhythm as

“something that patterns the flow of experience…to cycles of prediction and

anticipation” meaning that as the player gains experience in matching their inputs

to the visual cue, they will begin to become in tune with the rhythm no longer

relying on the visual cue.

Figure 22: The slider for visual cues, showing green to inform the player they can

move

60

More visual feedback for the player was required however. Figure 19 illustrates that,

on the successful execution of a valid press, the user’s score increases. This type of

visual feedback is a motivator in rhythm games (Charbonneau et al., 2009, 3) and

encourages players to stay in rhythm. However, there was no visual feedback to

communicate to players that they had failed an input. Swink (2008, 119-124) states

that an input signal needs to be processed by the game and provide some form of

instantaneous feedback, otherwise the game feels unresponsive. As there is an

instantaneous response on successful movement, the same was required to indicate

failure to indicate the input was processed. The solution was to apply a screen shake

effect for missed beats. The code for this effect, is shown in Figures 23-24. With

this inclusion the beat detection algorithm was considered complete.

Figure 23: The script that controls the camera shake for missed beats

61

Figure 24: The call of this camera shake script in player movement, when the

player is not on beat

5.3.2 - Key and Colour Implementation

As discussed in the literature review, a change in key would be utilised to change

the colour of the game, using colour grading to help elicit an emotional response in

players. Unity has different post processing effects for colour grading, some of

which were attempted achieving differing results. To set the colour used for the

game, it was important to define a dictionary in a script, shown in Figure 25, that

corresponds to each colour as defined by Castel’s model in Figure 4.

62

Figure 25: Key to colour dictionary defined by Castel’s model, each colour is

shown by each comment

Each key in the dictionary corresponds to the music key, stored in the

GameManager singleton. The first attempt at using colour was the bloom post

processing effect in Unity. Bloom “produces fringes of light extending from the

borders of bright areas in an image” (Unity, undated) and has a tint component for

different colours. The effect of bloom on the game is shown in Figure 26.

Figure 26: The use of Unity’s bloom effect for a key of 4

63

The bloom effect for the colour violet is shown in Figure 27 alongside the code used

to generate bloom.

Figure 27: The code for bloom along with the effect of bloom for a key of 9

The main observations from using bloom are, whilst the tint offered a subtle colour

effect, the colour of the background of the game in Figure 27 turned blue, rather

than the usual green. This was a concern as, rather than the player receiving an

emotional response from the song key, any emotional response could be attributed

to the change in background colour. Therefore, a different effect was explored.

The second post processing effect tried was channel mixer which influences the

components of each colour on the overall mix of the channel. For instance, if the

influence of green increases in the red channel, shown in Figure 28, all aspects of

the game scene that are green will have a redder hue (Unity, undated). The mixer is

split into three components, the red, green and blue channels.

64

Figure 28: The red component of the channel mixer

However, as the channel mixer has a value between -200 to 200, it meant that the

RGB component of each colour needed to be converted into a number the channel

mixer could accept. The calculation is shown in Figure 29 and the resulting effects

in Figure 30.

Figure 29: The calculations required to convert RGB values for the channel mixer

65

Figure 30: The result of using channel mixer for keys 4 and 9

Whilst Figure 30 does show both yellow and violet colours as expected, there are

still issues with the visual output. Yellow can be seen slightly in the flowers for key

4, however the predominant effect of the mixer causes the background to become a

fluorescent green. This means the same immersion issues as outlined for bloom

remain. In fact, for a key of 0, a blue colour, the effect was worse as the game was

completely enveloped in blue, making it difficult to see either the player or enemies

in gameplay, as shown in Figure 31. One question in the IEQ related to players

liking the visuals, as if players in the experimental game preferred the visuals (due

to the use of different colours within the game) it contributes to greater immersion

overall (Bowman and McMahan, 2007, 3). Therefore, this poor visual output

negatively effects the immersive qualities of the experimental game.

66

Figure 31: The result of using channel mixer on key 0

Neither post processing effect was working as intended, with the background being

predominantly affected. It was therefore decided that a different approach to map

colour was needed. Since Fonteles et al. (2013) had already used Castel’s colour

system in a successful particle system implementation, it was decided to incorporate

Unity’s own particle system utilising Castel’s model, with the particles being

emitted from the player as they are always present on the screen. The particle system

utilises the same dictionary as the post processing implementation, illustrated in

Figure 32, with the resulting screen also shown.

67

Figure 32: The use of a particle system to display colour, alongside the code

required

It was not clear if the particle system was the best mapping to use for key. Particle

systems in games are usually reserved for special effects, i.e. fire, smoke, explosions

(Hastings et al., 2008, 1) and are usually triggered as a visual response to a game

action, i.e. dust when a foot hits the ground (Swink, 2008, 152) conveying impact

or motion (Swink, 2008, 159-160). However here, the particle system is triggered

68

automatically, regardless of player action. It has no effect on gameplay, nor does it

convey information about game actions. When El-Nasr and Yan (2006, 4) describe

player visual attention in 3D games, they note that certain visual effects, i.e. a bright

object to indicate an item to improve player health, catches the player’s attention.

Since the current visual effect leads to no significant difference in gameplay or

offers helpful feedback such as hinting at a useful item, it is likely that the player

will lose interest in this effect over time as it represents nothing to the player (Swink,

2008, 171) rather than identify that it reflects the song key.

Consideration was given to removing the background colour entirely, instead using

the background colour component of the camera as the post processing effects Unity

offered were being adversely affected. Whilst the literature review stated that colour

grading was an effective way to influence player emotions, the stated aim of the

study is to attempt to see if a colour change, derived from key, leads to enhanced

immersion and this does not need to come from colour grading. It was theorised

that loading a level with the exact colour relating to the key should be striking and

noticeable enough to enable the player to feel an emotion instigated by the colour

change and not influenced by any external factors. The resulting script and effect

are illustrated in Figure 33. With this feature implemented, the key and colour

implementation aspect of the project was considered complete.

69

Figure 33: The script for changing the camera colour and the resulting game

scene.

Note that some colour values have changed, as the previous RGB values for colours

such as olive green were erroneous and needed amending. Also, Color32 has been

used instead of Color as it is less memory intensive (Unity, 2015).

70

5.3.3 - Volume and enemies

The literature review discussed how there tended to be a greater intensity for louder

songs and thus that the game should reflect this. Difficulty was adapted as greater

difficulty leads to more intense gaming experiences. Good game flow is achieved

by offering players appropriate challenges, i.e. to surpass challenging opponents

(Sweetser and Wyeth, 2005, 6) and so more challenging enemies were added to

elicit this desired intensity for greater immersion. 5 enemies were designed for the

game with 2 being reserved for louder songs. The code for all 5 enemies can be

found in appendices E-I, however a summary of the 3 enemies common to all songs

is shown below:

• Mimic: Moves in the opposite direction to player movement

• Zombie: If the horizontal distance to the player is less than the vertical distance,

move horizontally, else move vertically

• Skeleton: Moves in a random direction

For louder songs:

• Strong zombie: Works similarly to a regular zombie, however has a larger attack

radius

• Mage: Moves towards the player and shoots a projectile if the player is in range

Once each enemy was created, a script was required to spawn them, shown in Figure

34, based on the loudness property and time signature field in the singleton

informed from Spotify.

71

Figure 33: The code for spawning enemies

Spotify measures loudness between 0 and -60 Db, from quiet to loud, however it

had initially been assumed that louder songs were below -30D, so for any song

where this is not true, only the 3 easier enemies spawn, otherwise the spawn pool

includes all enemies. Enemies are spawned in each level at a random empty

location, with spawn rate dependant on the song’s time signature. So that the player

does not get overwhelmed by enemies and reach the anxiety zone of flow, the

maximum number of spawnable enemies for the level is 5 with the coroutine only

running if the number of enemies in the level does not exceed 5, otherwise it waits

until the condition is true i.e. as soon as an enemy is killed, a new enemy will spawn.

As a roguelike game is being created, the following elements are required. Firstly,

the creation of turn based combat and movement, dictated by the rhythm. Secondly,

a character with an inventory system to manage, achieved by adding durability to

each weapon, meaning there is a requirement for players to manage weapon

durability. Part of roguelike design is allowing players themselves to discover the

functionality of different weapons, with each weapon demonstrating a different

72

attack style to satisfy this curiosity. Weapons spawn after durability reaches zero.

It was initially planned to use the BoxCollider2D component as a child of the player,

using a static variable to check the player’s current weapon, adapting the strike zone

depending on where the player moved. The relevant code is shown in Figures 35-

37.

Figure 34: The weapon controller script handling different weapon functionality

73

Figure 35: The PlayerController code that adapts the weapon zone depending on

movement and aims to stop player movement is an enemy is within range

Figure 36: The trigger function in Enemy that allows weapons to attack enemies

However, it was found that this method violated a principal component of roguelike

combat, that a player should not be able to move and attack simultaneously (Izgi,

2018, 13). This was due to a trigger in the enemy script, allowing weapons to attack

enemies. OnTriggerStay2D is called on every frame, causing an instantaneous

74

response once the player had both moved and entered an enemy collider, allowing

both actions to occur at the same time. Rather than creating a BoxCollider2D on the

child of the player, this component was removed and a Physics.OverlapBoxAll used

instead. This checks if any enemies were present inside the box and, if so, allows the

player to attack. This rendered the use of the trigger function in the Enemy script

obsolete. The revised WeaponController script is shown below.

Figure 37: Revised Weapon Controller, using the Physics2D method

Once the box collider is drawn, a check is completed to detect if the player is

currently moving. If true, the enemy should not be attacked, otherwise, any enemies

in the box are attacked and the durability of the weapon decreases. The game now

had functioning combat and variants of difficulty via enemy spawning. A further

observation is that, enemies should not move on every instance that the

GameManager is “on beat”. Currently enemies move on every instance where this

is true. However, in Crypt, most enemies tend to have an interval of beats between

moving. Therefore, a further condition for an enemy is required, that being to ensure

that the enemy waits a set number of beats before moving, shown in the Figure 39

Zombie script.

75

Figure 38: Limiting zombie movement in the ZombieController script

When onBeat is true a variable called beatCounter increases, with the enemy moving

if beatCounter passes a threshold, this being the number of beats required to pass

before an enemy can move again, with the counter resetting once true.

Finally, there needed to be a way for enemies to attack the player, shown in Figure

40, achieved by assigning a separate child object to the player, a circle trigger

collider that damages the player when entered by enemies. To ensure that the player

does not get repeatedly attacked, the enemy cannot attack again for three seconds.

The same screen shake effect as shown in Figure 23 is used to communicate to the

player that they have been attacked.

76

Figure 39: The code for enemy attacks, should the trigger collider on players be

entered by an enemy

77

Note there is a static function called PlayerHealth.TakeDamage(), which removes

health from the player on enemy attacks. Now that all the baseline game features

had been implemented, it was time to incorporate the JSON files into the game.

5.3.4 - JSON files and Unity

Objective 1 stated that 5 songs were picked that were musically distinct from each

other, meaning that the tempo, volume and key differed. Table 4 outlines the 5 songs

chosen.

Song Artist Tempo Volume Key Citation

Reckoner

(Song 1)

Radiohead 104.271 -7.441 4 (Radiohead, 2007)

Twilight

(Song 2)

Electric Light

Orchestra

139.588 -10.876 0 (Electric Light

Orchestra, 1981)

Little Dark

Age (Song 3)

MGMT 97.512 -6.156 6 (MGMT, 2017)

Shimmy

(Song 4)

System of a

Down

118.97 -3.556 2 (System of a

Down, 2001)

She’s Lost

Control

(Song 5)

Joy Division 144,246 -7.63 11 (Joy Division,

1979)

Table 4: Songs used in this project

78

Each JSON file was generated independently using the Python script developed in

section 5.1, with the files generated integrated into the Unity project. However,

JSON files are structured as follows, as “dictionaries…of key-value pairs” (Bourhis

et al., 2017,1). The JSON file currently returned has the following key-value pairs.

Firstly, a key of “meta” which is associated with various meta data such as the

platform used to read the data relating to the track (Spotify, undated). Then a further

key, that being “track”, containing the audio data required for the project (Spotify,

undated). Further keys exist, including “bars”, “beats”, all containing different

elements relating to the song. The function JsonUtility.FromJson() is required to

load this data in Unity, taking the fields from the JSON file (these being the keys)

and assigning them to variables in a serializable object. However, the following issue

was found. As each field in the JSON file was effectively a nested object, this also

requires the serializable object in Unity to have objects nested inside, an example of

which is shown in Figure 41.

Figure 40: The initial implementation of JSON files in Unity

79

This started to become complex as there were now multiple keys that linked to

different objects within the JSON file. However, as the risk analysis identified that,

if there were any performance issues, the average key could be used it was decided

to adapt the JSON file returned, with most information except for “track” not needed

for the project. Therefore, the only object that needed to be serialized in the JSON

file was “track”. A further consideration was that there was less risk of players

feeling unwell should the background colour continually change by transitioning

between keys. Keeping to an average tempo allows a consistent difficulty

throughout the song meaning that new players do not feel out of sync by continually

adjusting to different tempos, negating the risk of alienating new players.

Furthermore, analysing the Spotify data, any differences in tempo throughout each

segment were minor and would therefore be negligible to the player as shown in

Table 5 for Reckoner, where tempo tended to stay at roughly 104 BPM. Therefore,

the Python code was updated in Figure 42.

80

Section Tempo

1 104.333

2 104.314

3 104.227

4 104.313

5 104.319

6 103.237

7 104.494

Table 5: The differing tempos for the song Reckoner

Figure 41: The updated Python code, only exporting the “track” JSON key

This Python code now only contains information for the track object that is passed

through to Unity. The updated file is shown below for Reckoner.

Figure 42: The updated JSON file for Reckoner, which no longer has the meta key

Now that the JSON file loads the relevant information for the game, all that was

required was to parse these variables into Unity and into the GameManager

81

singleton, so that they could be used in game. In order to allow the player to choose

which song they wished to play, Figure 44 shows a new scene with 5 buttons each

corresponding to a different song.

Figure 43: The Music Selection scene, containing five buttons that load a level of

a specific song attached on the button

The following script, CanvasSelection, assigned information from the JSON file as

it contained a System.Serializable class called track, with variables corresponding

to variables in the JSON object, shown in Figure 45.

82

Figure 44: The Track object in CanvasSelection containing information fields

found in the JSON file

Once created, the JSON file was loaded in using the aforementioned method. This

method returns an object created from the JSON file, with the variables of this object

assigned to the corresponding values in the singleton. The related song also needed

to be loaded into the game, created in a separate method, with both methods executed

when the related button is clicked. Both methods are shown in Figure 46.

83

Figure 45: The MusicLoader and AudioLouder methods, which pass information

to the singleton and load the song relating to the JSON file respectively

As a singleton exists as a static object, its variables remain accessible between scenes

allowing the JSON information to be carried over between scenes. With the JSON

files successfully parsed, the next step was polishing and playtesting the game.

5.3.5 - Polishing and Playtesting

After the songs had been added to the game, a modification for enemy spawning

was required. Currently, if the volume of a song was less than -30 dB, then the size

of the enemy pool increased to include more difficult enemies. However, none of

the songs fell below -30 dB. Furthermore, it was realised that the initial

84

understanding of this parameter was incorrect. When measuring loudness in

decibels, the scale is normally positive i.e. “threshold for human hearing is set at 0

dB; painful sound is 140 dB” (Knauert et al., 2016, 1). However, Spotify’s loudness

is measured from -60 to 0. In section 5.3.3 the assumption was that Spotify

measured volume backwards. However, further research discovered that negative

dB values in fact indicate “a decrease in … loudness” (Sziklai et al., 2011, 3).

Therefore, the code now be needs to check if the song has greater than the average

loudness of all 5 chosen songs. This was calculated to be -7.1318 dB.

It was also felt that the game needed more “juiciness” defined as “one player action

triggers multiple non-functional reactions in the game” in the form of excessive

positive feedback (Hicks et al., 2019, 1). Adding juiciness to a game heightens both

player experience and motivation, providing the level of juiciness isn’t extreme

(Kao, 2020, 1) as this can cause irritation for being overly excessive (Kao, 2020,

7). In order to facilitate the positive feedback that juiciness allows, a particle effect

was added when an enemy is killed by the player. This helps to inform the player

that they have performed a positive action and gives intrinsic motivation to continue

attacking enemies. It was felt that the prior lack of juiciness may have caused the

game to feel boring as there was less motivation to attack enemies, meaning lower

immersion. This is because the player is no longer focusing on the main goal, to

survive, instead focusing on other goals, potentially outside of the game due to

boredom removing them from the game experience (Bench and Lench, 2013, 1).

The code for this particle system and the resulting effect are shown in Figure 47.

85

Figure 46: The particle effect after enemy death and the code to trigger this

Note that the particle code is assigned to the parent class Enemy and inherited by

each enemy. As the OnDestroy() method is the same for each enemy it is more

efficient for this to be inherited. Whilst the use of this particle system leads to all

particle systems being played when transitioning between scenes, as all enemy

game objects have been destroyed, this effect unintentionally allows the game to

feel “juicy” as it provides feedback that the level is over (Kao, 2020, 3).

Playtesting is important and normally happens throughout the design process

(Fullerton, 2014, 272). Initial playtesting was implemented by the game designer to

ensure that the core mechanics were established and that any problems with the core

design were resolved (Fullerton, 2014, 272-273), with the results of this shown

throughout section 5.3. Now that this had been completed it was important to

playtest the game with both the supervisor and associates of the designer, to ensure

that “they have enough information to begin playing” (Fullerton, 2014, 273)

meaning that they are able to understand how the game is to be played. A summary

of the feedback from this stage is outlined below, adding new items to the SCRUM

backlog:

• Players were unsure when to attack

• Players did not understand the difference between weapons

86

• Players were initially unsure how to play the game

• The margin of error felt too unforgiving

• There was no penalty for failing a beat

• There was no gameplay reward for killing an enemy

• It was very hard to game over

Most of these critiques stem from poor flow and could cause frustration in players,

leading them to quit the game (Ašeriškis and Damaševičius, 2017, 3) with this

negative experience causing a biased perspective when filling the IEQ.

Games must support player skill development and mastery which involves players

being taught to play the game (Sweetser and Wyeth, 2005, 5). As the player is

confused as to how the game itself is played, i.e. when to attack and the differences

between weapons, then this flow criteria is not being achieved. Furthermore, the

margin of error was unforgiving, meaning the skill level of the player did not match

the game difficulty and thus led to anxiety (Sweetser and Wyeth, 2005, 6).

While juiciness was added to the enemy for intrinsic motivation, there was no

gameplay reward from this event, as rewards promote a positive game experience

and affect performance by giving better motivation (Denisova and Cook, 2019, 2).

Conversely, receiving no penalty for failing a beat, led to little motivation and

challenge for the player. Players also found the game too easy, therefore increasing

boredom levels in the game (Sweetser and Wyeth, 2005, 6). The lack of game sound

effects when attacking enemies also made the game feel less polished. Swink (2008,

160-161) defines sound effects as a polish metric, for instance to indicate the impact

of two objects. Sound effects also greatly increase immersion (Sweetser and

Johnson, 2004, 5). Therefore, sound effects were added once an enemy was

defeated, to generate a better feeling game and experience, with the sound varying

dependant on the weapon used, representing different object interactions. The

87

margin of error was also increased to be more forgiving and so prevent player

anxiety.

In order to provide the player with more motivation to both attack enemies and to

successfully execute a beat, the score doubles once an enemy is defeated with the

score decreasing on failure, replicating similar features in existing rhythm games.

An increase in score acts as a reward mechanism for doing well (Chen et al., 2016,

2) whilst scores are often reduced on beat mistakes (Chen et al., 2016, 1). A tutorial

screen was included, describing how the game is played to make it more

understandable. The screen is toggled by the use of a button meaning experienced

players can bypass this screen. Whilst this violates the procedure of flow, that

“learning the game should not be boring, but be part of the fun” (Sweetser and

Wyeth, 2005, 5), as information relating to the game is displayed in a similar way

for existing rhythm games published on itch.io (Zong and Shannon, 2023) this was

deemed acceptable. There was also no clear indication of the difficulty level of each

song despite the songs having varying tempos. Therefore, the instruction screen was

amended to include this information enabling players to pick songs that matched

their skill level. This was needed as the risk analysis stated players new to rhythm

games may need to begin with a slower song before proceeding to faster songs.

An arrow has been added to the screen to indicate where a player can attack after

moving their character, shown in Figure 47. This was as a result of feedback

indicating that users felt they had no way of knowing if their actions had any effect

on the game state and thus led to frustration (Atanasov, 2013, 20). The code for

displaying the arrow is shown in Figure 48.

88

Figure 47: Arrow display code that is used to inform players the direction of

attack

This coroutine waits until the player has hit a beat successfully, at which point an

arrow is rendered on the local position of the weapon zone child object in player.

The arrow is displayed only when the player currently has a weapon and will only

be displayed for a second. In order to give players more context about how each

weapon is utilised, more text was added to the canvas so that the player received

appropriate feedback and information. This better facilitates the discoverability

aspect of roguelikes as the player is provided with information that encourages them

to experiment with the weapon. The updated PlayerController code is shown in

Figure 49.

89

Figure 48: The code to display weapon information in PlayerController

Originally, when a player was attacked by an enemy, a camera shake effect was

played similar to when a player missed a beat. Ideally feedback should act as

communication “between player and game… so that players can understand and act

accordingly in any situation” (Atanasov, 2013, 24). However, players may now be

confused and uncertain as to their next action as the feedback could relate to two

different scenarios: a missed input or enemy attack. To remove this ambiguity,

separate feedback was created for an enemy attack, achieved by applying a film

grain filter via post processing (Unity, undated) which now allows players to have

better knowledge of their status enabling better flow (Sweetser and Wyeth, 2005,

6).

Consideration was also given to whether the current implementation of colour was

noticeable to players. In the current state, only a single flat background colour was

being displayed, initially due to existing post processing effects manipulating the

green background. It is known that flat colours in a game can work well with certain

aesthetics, for example they work for a more cartoonish game than a realistic game

(Cheng and Cairns, 2005, 2) and therefore works within the context of the created

game. However, from the literature it was also known how post processing effects

can influence the immersion of the player. It was therefore decided to retry bloom

90

and evaluate its effect. Figure 50 below shows the resulting effects from all 5 key

to colour mappings in the game for yellow, blue, orange, green and indigo blue.

91

92

Figure 49: The results of bloom for all five colours of yellow, blue, orange, green

and indigo blue

It was initially felt that bloom’s effect was too subtle, so may not be perceived by

players. In certain cases, this caused green background was changed to blue, with

this scenario occurring when colours are “colder”, i.e. blue and indigo blue. Each

game object received a tint of each respective colour in Figure 50. When the

supervisor was asked if it was clear that each colour was seen, the supervisor

responded positively. It was therefore decided to revert to using bloom as it was felt

that the provision of bloom elicits better immersion, corroborated by existing

literature. The use of post processing could also allow for a more detailed

background, as shown by tiles containing rocks and flowers in Figure 50. Schwartz

(2006, 2) found that for existing games such as Shenmue (Sega-AM2, 1999) players

found the game more realistic if there were detailed environments, regardless of

how fantastical they seemed. Since a flat background colour offers no detail, it also

goes against the metaphor metric of treatment with Swink (2008, 171) describing

specifically that “the cohesive whole formed by visual art, visual effects, sound

effect…and music” is lessened. Whilst the sound effects or character art provide

detail for the game, the background itself is simple and abstract, causing some

93

“dissonance in the player” (Swink, 2008, 172) as one aspect of the treatment

contradicts all other aspects. Therefore, it was felt that overall bloom was better

than using a flat colour to represent the key.

With the results of playtesting completed, the game was ready for official testing.

94

Chapter 6 - Results & Discussion

6.1 - Control Game Creation

Certain requirements for the experimental game were also applicable to the

control game. Although the control game required JSON objects to be parsed

through, only tempo was required for use in the beat detection algorithm for

player/enemy movement. Other game aspects preserved included the use of

weapon durability with enemy spawning being based on a constant value of four,

rather than time signature. As the existing songs used had a time signature of

four anyway, this means the control and experimental games will always have

the same enemy spawning rate. Furthermore, key and volume, the two

differential features that are measured in the experimental game, are removed

from the control game to determine if tempo alone leads to a less immersive

experience. This means that the post processing effect of bloom is also removed,

so there is no longer a colour shift to affect the player’s emotions. The enemy

pool is limited to the three default enemies reserved in the experimental game

for quieter songs. This determines if the intensity was still the same in the control

game despite there being no influence from volume with no harder enemies

being spawned. A screenshot of the control game is shown in Figure 51, which

shows gameplay without the colour change feature.

95

Figure 50: The control game showing song 2 during gameplay – the player has

moved upwards and aims to attack the zombie enemy

6.2 - Immersion Questionnaire Results

The IEQ results are shown in Appendix J from the testing procedure described

in 4.5.1. No participants withdrew from the study. Observational data was

recorded for all participants, however the first three control observations had to

be discarded as the tester did not accurately record the number of missed beats

during play leading to inaccurate data. All other aspects of the procedure were

followed correctly, meaning all IEQ scores could be used. The score for each

IEQ was calculated using Nordin et al. (2014)’s method alongside the existing

immersion study Thompson et al. (2012). In Thompson et al’s. (2012, 3) study

they specify that questions “6, 8, 9, 10, 18 and 20 (are) marked negatively”

therefore the corresponding questions in this study are also marked negatively.

An extra question “Did you ever want to stop playing the game at any point?”

was added to this study and also marked negatively. This questionnaire also

facilitated the last requirement in Chapter 3, as certain GEQ questions were

96

adapted to fit this IEQ, as discussed in 4.5. The final four questions were created

to determine if key and volume were having an effect, i.e. a higher score when

asking if the game was intense in the control game meant that volume’s use in

the experimental game provided a negligible effect.

The general hypothesis was as follows: “Players should be more immersed in the

experimental game than the control game” with the use of key and volume being

perceived as enhancing immersion in either an emotional or exciting way.

The overall mean immersion score for the experimental game was 132.5 and

121.9 for the control game, while standard deviation was 14.3 (3sf) for

experimental and 8.39 (3sf) for the control. This therefore would seem to imply

that the research question was met: the more musical features used, the greater

the effect of immersion on the game itself. Figure 52 shows the results for both

the control and experimental games in box plots.

Figure 51: The box plot for the control and experimental games, in blue and

orange respectively

Im
m

er
si

o
n
 S

co
re

Control Experimental

97

For the control game, one value, 152, was an outlier and therefore excluded when

calculating the mean. Outliers were determined if they are greater than the third

quartile, so for the control game 127 + (1.5 x interquartile range), with the IQR

being 9.5, and 152 greater than 141.25.

The outlier participant’s comments surrounding the control game was that they

had found the game challenging due to their lack of rhythm game experience,

confirmed by certain results in their questionnaire, such as finding the game

particularly intense, not finding the game easy and feeling they performed poorly

in the game overall. They also wanted to win the game and felt in suspense at

the results of the game. Lazzaro (2009) discuss how one aspect of play

experience can be hard fun, “where the frustration of the attempt is compensated

by the feelings of accomplishment and mastery from overcoming obstacles”.

Games considered hard fun include Dark Souls (FromSoftware, 2011), notorious

for its difficulty, but maintains flow by creating “goals and motivation”

stemming from the desire not to lose progress (Guzsvinecz, 2023, 5-16). This

user could therefore be used to playing games that are “hard fun” and therefore,

in spite of finding the game challenging, is never demotivated as they have an

intrinsic wish to master the game’s difficulty, whereas other players may be more

disheartened as they are not used to this gameplay style.

A histogram was created for both games, in Figures 53 and 54 respectively, to

determine if the data fits a normal distribution in both cases.

98

Figure 52: The histogram for the control game

Figure 53: The Experimental Game Histogram

Thompson et al. (2012, 3-4) warned that their study did not produce a normal

distribution. To verify a normal distribution for these results, at least 95% of the

values must lie plus/minus two standard deviations away from the mean. This

was important as, depending on if the data is parametric or non-parametric, the

N
u
m

b
er

 o
f

P
ar

ti
ci

p
an

ts

Immersion Score Bracket

N
u
m

b
er

 o
f

P
ar

ti
ci

p
an

ts

Immersion Score Bracket

99

type of significance test used is affected. For the control game, that range is

105.12 and 138.68, which fits all values bar the outlier. For the experimental

game, this lies between 103.9 and 161.1. Furthermore, both histograms were not

skewed and had not heavily deviated from a bell shape (Sainani, 2012, 1) further

reinforcing this was normal data. Therefore, the results have a normal

distribution and significance testing can occur using a right tailed independent

samples t test, as discussed in 4.5, to determine if there is a significance between

the two groups. When calculating this p value, the null hypothesis which

“assumes no difference between the two means…the recorded difference is not

significant” (Mindrila and Balentyne, 2013, 4) is rejected only if p is less than

0.05, as this p value represents the tail end of the normal distribution (Mindrila

and Balentyne, 2013, 7), the result is therefore unlikely due to chance as these

values do not represent 95% of the populace.

The way to calculate the t value differs depending whether the variances of the

two populations (standard deviation squared) are equal. An F-ratio test is used

(Snedecor and Cochran, 1983) to check this, which has a null hypothesis that

both variances are the same, but is rejected if F = σ1/ σ2, where σ1/σ2 is the ratio

of the respective variances, is greater than the F-ratio table value from the

degrees of freedom of the experimental and control games, which are 10-1 and

9-1 respectively. Using this formula, F = 204.49/70.3921 and therefore F = 2.91

(3sf), with the F-Table value being 3.39 at row 9, column 8 in Appendix K

(University of Sussex, 2005). Therefore, the calculated F value is not greater

than the F-Table value at 0.05 significance so there is insufficient evidence to

reject the null hypothesis. The t test formula used is shown in Figure 55.

Figure 54: The two sample t test formula (JMP Statistical Discovery, undated)

100

The standard error of difference is calculated by the pooled standard deviation,

shown in Figure 56 squared, which is then square rooted.

Figure 55: The pooled standard deviation squared (JMP Statistical Discovery,

undated)

Where n1 and n2 are the number of participants in the experimental and control

group respectively, and s1 and s2 consequently being the standard deviations

from their respective experiments. The pooled standard deviation was calculated

as 11.9 (3sf). Standard error of difference required this value, multiplied by the

square root of 1/n1 + 1/n2 (JMP Statistical Discovery, undated), leading to a final

value of 5.47 (3sf). Difference of group averages was calculated as 132.5 –

121.9, equalling 10.6. Therefore t = 10.6/5.47 and overall t = 1.94 (3sf).

The t value itself needed to be determined using a t-table at 0.05 significance

level and a degrees of freedom value equal to (n1 + n2 -2) (JMP Statistical

Discovery, undated) which was 17. Utilising a website that calculates the t value

at 0.05 significance (ttable.org, undated), the t value was 1.7396. As the

calculated t value is greater than this value, the null hypothesis can be rejected,

meaning that there is significant difference between the two means calculated

and there is evidence that immersion does increase using more musical features.

It is likely this result occurred as, the larger the sample size, the greater the t

value. As t grows there is greater likelihood that the null hypothesis is rejected,

as the growth of t causes the p value to “converges to zero” (Rouder et al., 2009,

3). Furthermore, “increasing the sample size will, on average, result in a gain of

101

evidence against the null” (Rouder et al., 2009, 2) meaning that if more

participants were included in the study, a larger t value occurs to reject null.

6.3 - Discussion of Findings

Whilst the use of significance testing does support the notion that immersion

increases in the experimental game, Rouder et al. (2009, 2) sounds a word of

caution: “significance tests tend to overstate the evidence” against the null

hypothesis. This could therefore imply that this significance test does not truly

support the research question. Other potential concerns are outlined below:

6.3.1 - The use of the slider

One common comment in both games was regarding the slider. This related to how

its incorporation in the bottom right screen was distracting. For instance, E2

(Experimental 2) noted that the slider in the corner meant they had to switch their

focus from the character to the UI whenever going off tempo, and also felt it was

not immediately clear to understand, despite the use of green and red colours. E4

felt a similar way and suggested a better way of communicating when on beat, such

as “splitting into 4 to better differentiate beats of each song”. E3, E10 and C4 also

stated that they felt that even though the slider was indicating they were off beat,

they felt the opposite, although this could mean that the margin of error needed re-

calibration. C6 commented that even with the slider, they found the game difficult,

stating that in existing rhythm games, the visual cue was much more apparent than

in this game. In Crypt of the NecroDancer (shown in Figure 57), the visual cue is

displayed in the middle of the screen, with “bars” showing the player the time until

the next beat. C1 stated this gives better feedback to the player as it can determine

if they were too early or late on each beat. This might have caused some negative

effects on immersion for each participant due to diminishing effects on flow:

102

Sweetser and Wyeth (2005, 6) mention that “players should receive immediate

feedback on their actions” and the fact players were not informed how early/late

they were meant they lacked crucial information to help them “progress toward their

goals”. However, when looking at questions 18 and 22 which evaluated if the player

felt like giving up (anxiety state of flow) or if they were performing well (in flow),

the overall results in both experimental and control were 4.1 and 3.6 (using inverted

values) for Q18 and 3.4 and 2.6 for Q22. This implies that, even if the slider was

not fully effective at communicating information, players felt mostly in flow in the

experimental game. This was surprising to the researcher considering that there

were more dangerous enemies involved in the experimental game and distraction

from the slider, could cause anxiety as players had less control on moving their

character away from these enemies (Sweetser and Wyeth, 2005, 5). C2 mentioned

that while feedback was not always clear, they felt the core loop itself was engaging

enough to overlook this and perhaps this view resonated more in the experimental

group.

103

Figure 56: The visual cue in Crypt of the NecroDancer (Brace Yourself Games,

2015)

To improve the slider system, consideration should be given to where the player

looks during play. Crypt centres the visual cue in the bottom centre of the screen,

rather than the bottom right. Caroux et al. (2011, 1) mention that for game

information i.e. score or, in this game, the slider, the UI information should be

located, but not overlapping with, the direction where the player is anticipated to

move. Furthermore, it is recommended that designers place information sources

closely together if they contribute to the same goal (Caroux et al., 2011, 13). Since

the slider contributes to the player goal by informing them when to move, the slider

should be closer to the player, addressing the complaints regarding how players

needed to shift their attention between the game and the visual cue. This can be

achieved by displaying the slider directly above, and moving with, the player

meaning the player focuses purely on the game area rather than breaking up their

play to observe the slider.

E2 further mentioned that they found the overall use of the UI was too distracting,

with information such as player health, weapon durability again drawing attention

104

away from the game. Caroux et al. (2015, 5) mention that players had better flow

when “less information is displayed on…screen”. Therefore, the UI information

could instead be translated to better polish metrics as described by Swink (2008,

160) such as sound effects, where an impact sound could be played as a weapon

breaks, to provide a better perception of object interaction. This could also address

other issues players highlighted, E8 stated that they focused so much on being on

beat that they did not notice their weapon broke, whereas a sound effect would make

this immediately clear.

6.3.2 - Player Performance

Appendices L-P showcase player performance for each song in the

control/experimental stage, indicating that the performance results vary wildly,

regardless of the control or experimental game. However, it can be determined that

people generally performed the best in Song 3 and the worst in Song 1. This can

probably be attributed to a “sudden start” as E10 describes with E10 further

suggesting the creation of a tutorial for new players. As Sweetser and Wyeth (2005,

7) outline, it is important to teach players how to play the game before starting.

Therefore the “sudden start” may have adversely affected enjoyment. As Song 3

had the slowest tempo of all the songs, it may have been easier for new players to

grasp the game mechanics, as illustrated by Crypt starting at lower tempos to

introduce its gameplay. Song 3 also had a larger margin of error than all the other

songs, compensating for its slower tempo. This could also have made the song easier

to navigate.

Some players stated that they felt they performed better in certain songs. E6 found

Twilight easier, having heard the song before, a view shared by C7, who stated that

they enjoyed playing Twilight’s level as they enjoyed listening to the song. Whilst

songs were picked with the aim of ensuring that no bias was derived from listening

to self-selected music, with Fierro (2012) noting that this creates higher immersion

105

levels, it is impossible to control if a song is liked by the participant, or been heard

before. This could have positively influenced the high immersion score for E6 at

152. Another comment relating to the scoring system is that when players were able

to attack enemies their score was doubled. E3 tended to get very high scores and

mentioned that this exponential score made them feel good and felt more in flow

due to being rewarded for good performance (Sweetser and Wyeth, 2005, 5). This

is further reinforced by the experimental players feeling that, on average, they

performed better in the game and could have contributed further to immersion.

Finally, certain players commented that they felt some songs were unsuitable for

rhythm games. E4, for instance believed that electronic or dance music was best

suited to the genre whilst E5 felt that Song 4 was not a good fit for the gameplay.

E8, however, mentioned that songs 3 and 5 were the most engaging due to the

music, E4 also performed the best in these songs. This suggests that the genre of

music used in the rhythm game may impact player performance and therefore,

immersion. Table 6 demonstrates the mean missed beats in the control and

experimental games.

106

Song Control Mean Experimental Mean

Reckoner (Song 1) 36 40

Twilight (Song 2) 30.6 32.5

Little Dark Age

(Song 3)

18.6 19

Shimmy (Song 4) 37 38.6

She’s Lost Control

(Song 5)

29 31.5

Table 6: The mean number of missed beats

Overall, Song 3 evokes the best performance, followed by songs 5, 2, 4 then 1,

with this trend occurring in both games. This may mean that Song 3 is the best

suited to the rhythm genre due to players consistently achieving the best

performance. Alternatively, it could also be that different music genres may suit

different levels of challenge, as discussed by Aslinger (2009, 1) genre diversity

can “satisfy inexperienced, intermediate and advanced players” due to genres

having “varying beats per minute”. Perhaps, Song 3 recorded the lowest number

of errors as it was best suited for more inexperienced players, allowing them to

ease themselves into the flow state. There is the potential that, for certain songs,

players cannot easily determine where the tempo lies. Large and Palmer (2002,

5) mention that is can be difficult to determine “which tones or features belong

to the same … part” which could make it difficult for a player to focus on tempo

during play, as this feature could be hard to determine across different parts of

the music. More research should be undertaken to determine the effect of music

genre on player performance in rhythm games to establish whether there is a

definitive trend.

107

6.3.3 - The use of key and volume

This section examines key and volume’s effect at enhancing immersion in closer

detail, to explain the results of the significance test. One question devised for this

study was “Did you enjoy the visuals of the game?” this establishing if the use of

key to colour was more visually interesting to the player. Another question was

“Did you feel emotionally different when playing the game?” establishing if the

player derived an emotional response from the colours of the game. Finally, the

player is asked “Did the game feel intense?” to determine if the loudness of the

game caused any effect on game intensity. A summary of the mean scores for

these three questions: Q36, Q32 and Q35 respectively are shown in Table 7.

Question Control Experimental

Q36 3.6 3.9

Q32 2.9 2.9

Q35 3.4 3.3

Table 7: The means for Q36, Q32 and Q35

The following can be determined: whilst overall players preferred the visuals,

this did not translate to a change in emotional response. Furthermore, the

intensity of the experience was marginally better in the control game, despite

more challenging enemies being spawned in the experimental levels. Q17 which

refers to how challenging the game was to play, was analysed resulting in values

of 4.3 and 4.5 respectively for the control and experimental game. The fact that

intensity is more prevalent in the control game, but reversed when analysing how

challenging the game was, is contradictory. The literature review discussed that

intensity results from challenge i,e when more difficult enemies spawn.

Furthermore, E3 mentions how these stronger enemies generated more

108

challenge, as projectiles were harder to dodge in certain songs. As the spawning

rate of the enemies is random, it is not always guaranteed that the stronger

enemies will spawn, therefore a player may have been faced with ‘easier’

enemies when playing in the experimental game, potentially reducing the

intensity. Sweetser and Wyeth (2005, 7) mention that challenge should increase

as the player becomes close to mastery, so it is probable that a higher spawn rate

of these tougher enemies as the player starts performing well facilitates the

desired intensity. E6 and E7 both mentioned the random enemy spawning,

enquiring about its functionality and, on learning that the loudness value was

used, stated that this was not obvious, similar to how Soundfall’s use of loudness

was not believed to be perceptible to the player.

Regarding visuals and key, there is evidence that the visuals in the experimental

game were preferred over those in the control game. This is further reinforced

by Q34 “Did you notice any differences in gameplay?” as the control game

scored 2.9 on average compared to 3.2. Since volume was not well perceived, it

is believed that the only difference in gameplay mentioned in Q34 must come

from key, as colour grading can be more noticeable to players as illustrated in

other studies such as Misztal et al. (2020, 4) who used colour grading to better

convey a sense of stress. Indeed, colour grading is known to have greater

immersive effects and this was reflected in overall immersion in the experimental

game. However, it is not clear if the visuals themselves link to emotional

response, as originally envisioned in the literature review. E7, for instance, stated

that they enjoyed the visuals as they reminded them of “old school games they

played as a kid”. This means, however, that the visuals were enjoyed more due

to the assets rather than the colour grading. E4 and E6 did notice that the colours

changed, responding positively to this. However, they were not aware that this

resulted from key. Therefore, the emotional level may not have been derived

from the key, but rather from other factors with Ravaja et al. (2006, 7)

mentioning that positive emotions could be elicited from rewarding events, i.e.

109

E3 mentioning how the score doubling for killing enemies made them ‘feel

good’. It could be that colour and emotion should be viewed separately in this

study. Furthermore, it is not believed the emotional response is linked to player

perception of the intensity of the experience: Cabanac (2002, 5) classifies that an

intense experience “may be related to sensation…without being emotional” with

Q35 referring to Chanel et al. (2008)’s findings, indicating if intensity and

arousal were more prevalent in the experimental game.

It is clear that the use of colour does lead to a greater immersive effect in rhythm

games. Players generally liked the change in colours even if this did not

necessarily lead to an emotional shift with Kauranen (2023, 31) discussing the

use of colour grading within a narrative frame, such as the use of green being

used to make the game feel more ominous. This stems from the film industry, as

colour grading is used to “support the mood of the story” (Higgins, 2003, 12).

However, the game created has no story, relying instead on the player goal of

achieving a high score, rather than to progress a narrative. Narrative, when

combined with other aspects of the game world, contributes to the immersive

experience (Brown and Cairns, 2004, 3) and perhaps the colour grading could

have enhanced immersion if it had been combined with a plot. Narrative tends to

not be the focus of rhythm games as it is the gameplay itself that feeds the

player’s goals for progression (Song et al., 2019, 5). Jennett et al. (2008, 8) state

that immersion could instead have been enhanced as there was a “change in

visual attention”: the difference in colour through each level. Miller (2013, 3)

discusses how Audiosurf, described in detail in 2.5.4, is able to demonstrate the

musical concept of tempo in an engaging way, with part of this being via the use

of colour. It may therefore be, that the use of colour in rhythm games may not

enhance immersion through emotional changes, but instead enhance immersion

and engagement through visual interest.

110

6.4 - Summary of Objectives and Requirements

A brief summary of the objectives and requirements facilitation is described in this

section. 6.1 describes how the control game for objective 8 was created, removing

features from the experimental game in order to investigate the project aim. This

experimental game was created for objective 7, facilitating the following

requirements: to parse JSON objects to give tempo data for the beat detection

algorithm, key to provide feedback on how musical features affect the game via

colour changes and volume to create variety in the enemies that spawn. Further

requirements for weapon spawning, durability, enemy movement and player

movement/attacks and enemy spawning are discussed in detail in Chapter 5, which

also incorporated objectives 4 and 5 and outlined how the experimental game was

refined from playtesting. The non-function requirements to create a design

document and game loop are shown in Appendices A and B with the MDA analysis

in Appendix C, fulfilling objectives 2 and 3. 5 musically distinct songs were picked

for objective 1, as shown in Table 4 and the requirement to create an IEQ is shown

in Appendix D. The initial requirement stated this was for the experimental game.

However, it became apparent that this questionnaire should apply to both games to

determine if the control game performs better/worse than the experimental game

regarding aspects that the experimental game should enhance i.e. intensity.

Objectives 9 and 10 were completed as twenty participants took part in the

experiment, completing the IEQ and having observational data recorded, following

the procedure set in 4.5.1.

111

Chapter 7 - Conclusion

As mentioned in the contributions, an elegant solution has been created for the

research question. This aim stems from a lack of research regarding features outside

of tempo being utilised in rhythm games. Justifications are outlined in the literature,

mainly that key relates to colour and colour relates to emotion, with volume

providing more intense experiences, this research being incorporated into the game

design document for the experimental game developed for this project. Key changes

the colours of the game via colour grading as this was established to be an effective

way to evoke emotional responses in games, whilst more difficult enemies are

present in louder songs to provide more intense experiences. The aim was to give a

novel solution to the problem, as whilst colours may be used in existing rhythm

games, as far as can be determined this study is the first to establish directly a link

between using key to influence colour and its effects on immersion in rhythm

games. Similarly, while Soundfall may use volume, it was argued that this may not

be perceivable by players so a new way of implementing volume was required to

investigate its immersive effects.

Overall, the results outlined in Chapter 6 do achieve the aim and research

question, that additional musical features can facilitate more immersive

experiences in rhythm games. Players particularly enjoyed the use of key to

change colour in the game, although admittedly this was not because they

noticed that key was being used to generate this effect, whilst the use of volume

for generating intensity was not readily noticeable. As discussed in 6.3.4, all

objectives and requirements have been achieved with the use of playtesting being

incorporated into the project in 5.3.5 due to its use in game design. Useful

feedback regarding game feel and juiciness was incorporated to generate good

flow and engagement. Playtesting helped to inform game aspects that were

initially missed, such as the provision of better goals and rewards for positive

actions in game. SCRUM as a methodology was also achieved. Whilst each

112

sprint, using the ABC method, was implemented successfully and allowed for

playtesting to add more features for a better game, it could have been deployed

more successfully. The games themselves, were generally enjoyed by all

participants, however there were some negative comments, particularly relating

to the slider, which should be taken into consideration for refinement.

Whilst the evidence from testing does support the research question by rejecting

the null hypothesis, there are certain limitations to the study itself. As discussed

in 6.3, colour did facilitate greater immersion, but is not clear whether this was

due to key facilitating an emotional response, or key facilitating a more visually

stimulating environment. There is evidence to support how changes in visuals

facilitate increased immersion, meaning that the use of key should not be

disregarded for more immersive environments. Future work could be undertaken

to establish how to create engaging narratives in rhythm games, using key-colour

theory to provoke more emotional response as colour grading is better at eliciting

emotions in a narrative context. There is potential interest in seeing if there is a

way to blend the existing hypothesis for key, colour, emotion with narrative in

rhythm games as existing rhythm games tend to not focus on narrative. The risk

analysis mentions players could feel unwell if colours shifted between segments.

Whilst this risk was erased by using average key, the question could be asked,

was there no emotional difference derived from the use of colour since this did

not change to reflect the differences in keys between song segments. This study

should be undertaken again using the different key segments with analysis

carried out to ascertain if this causes a greater immersive and emotional effect in

rhythm games compared to using the average key.

Another limitation to this study relates to the use of loudness in the game.

Initially it was believed that the value Spotify returned in the JSON file was the

song loudness. However, this may not be the case. In music mixing, there is

something called a “loudness war”, defined as an “increase in the loudness of

113

recorded music, particularly on Compact Discs…apply dynamics compression

and limiting in an attempt to make their recording louder than those of their

competitors” (Vickers, 2010, 1). This means that more recent recordings may

appear ‘louder’ when compared to recordings from decades ago. The music for

this study has been taken from a variety of eras, from 1979 to 2017. It is not fully

conclusive; however, which song is the loudest as this is subjective. Some

participants in the experimental game commenting that they felt Twilight was

the loudest song, even though it was the quietest overall. This could account for

why it seemed there was no difference in overall intensity between both games.

Whilst the loudest song should generate the highest intensity condition, the

player may feel the louder, intense song is more applicable to a different level.

This could imply that loudness is not a reliable musical feature to incorporate in

rhythm games, at least in relation to more intense experiences. An error in the

code for enemy spawning was also discovered after testing. Chapter 5 outlines

how any values greater than the average loudness should spawn the more

difficult enemies, this being the case for the songs Shimmy and Little Dark Age.

The enemy pool range had mistakenly been set to the inverse condition.

However, due to the subjective nature of how a player perceives loudness, the

study was not adversely affected.

One final limitation is that the test size is quite small and that there could be

unforeseen factors influencing the results obtained. Thompson et al. (2012, 4)

mentions the possibility that gender could have played a role in how immersed

a player was. Alternatively, if players had played a game previously, this could

also influence immersion. Whilst these factors were determined as not being

significant to Thompson et al’s study, these factors could be significant for the

control or experimental games. Some players stated that they had no prior

experience playing rhythm games and this could have influenced their responses

to questions regarding how easy they found the game. It could also explain why

the intensity was slightly higher in the control game if more inexperienced

114

players were included in this group. Therefore, going forward, questions

regarding a player’s experience in rhythm games should be included to

determine whether this causes a significant effect on results. A larger sample size

could also be utilised, although as mentioned in 6.2, this does tend to mean the

null hypothesis is more likely to be rejected.

Whilst not a limitation of the study, as this issue was prevalent in both games,

playcentric design should have been utilised when creating the game, defined by

Fullerton (2014, 11) as “involving the player in your design process from

conception to completion” and whilst one component, playtesting, was

incorporated, this was at the end of the implementation stage. When designing

goals or features the designer should get “inside the heads of players, not

focusing on the features of the game as you intend to design it” (Fullerton, 2014,

12). Whilst it is true that the designer was able to implement a visual cue during

self-playtesting, players were not involved at this stage. Their involvement

could, perhaps, have influenced the designer to develop a better visual cue,

together with other game features, such as the “sudden start” that players felt.

Whilst initially deemed satisfactory, on reflection, the comments from players

insinuated that this could have violated the concept of having the challenge of

the game matching the skill level for new players (Sweetser and Wyeth, 2005,

5) as players may feel the game has an immediate difficulty spike. Involving

players during implementation could have led to the design of a better system

for easing players into the game resulting in better flow. Furthermore, when

using SCRUM, a general principle is that at each step of the sprint a testable

product is created, i.e. an alpha version of the project (Schild et al., 2010, 3) with

potential new features/bug fixes/levels being added based on feedback from the

testing (Schild et al., 2010, 3, Kristiadi et al., 2019, 5), meaning that playcentric

design blends with SCRUM. Therefore, improvements to this project, should be

carried out in conjunction with players to improve aspects of the game i.e. the

slider.

115

This dissertation finishes by identifying areas for future work incorporating

results from Chapter 6. Firstly, there is a belief that key, colour and emotion are

linked and thus can lead to more immersive experiences. However, it is also

believed that this is not as easily determinable in a rhythm game, with colour

grading most effective in narrative contexts, not common in this genre. This

highlights two avenues for research. Firstly, is it possible to have a compelling

and engaging narrative in a rhythm game? Since it is discussed how colour

grading affects emotion during narrative, the key-colour theory could be

incorporated when pursuing this research question. Secondly, how powerful is

the colour grading effect in game narratives? It was discovered that players found

certain genres of music not a good fit for the game, reflected by some songs,

namely Reckoner and Shimmy, achieving very poor results. Therefore, a further

research question could be: Does the use of certain musical genres effect

gameplay performance in rhythm games? A final question relates to loudness. In

this project and the game Soundfall, loudness has been utilised in an attempt to

affect game difficulty. However, it is currently unclear if this feature adequately

affected player perceptions of both the experimental game and Soundfall.

Further research should be conducted into the effect of volume to determine if

there is a way to perceive this, incorporating different mechanics to measure

intensity. Furthermore, this study could be repeated, factoring in variables such

as gender or rhythm game experience to ascertain if these variables cause a

significant effect on results. If this is not the case, then it further supports the

results found in this study. Finally, the study could also be recreated to examine

the effect of using the different keys in each song compared to the average key,

to determine if this creates any emotional and immersive difference.

116

References

Agarwal, R. and Karahanna, E., 2000. Time flies when you're having fun: Cognitive

absorption and beliefs about information technology usage. MIS quarterly, pp.665-

694. [accessed 24 January 2024].

Almeida, M.S.O. and Da Silva, F.S.C., 2013. A systematic review of game design

methods and tools. In Entertainment Computing–ICEC 2013: 12th International

Conference, ICEC 2013, São Paulo, Brazil, October 16-18, 2013. Proceedings 12

(pp. 17-29). Springer Berlin Heidelberg. [accessed 24 March 2024].

Andrade, A., 2015. Game engines: a survey. EAI Endorsed Transactions on

Serious Games, 2(6). [accessed 18 October 2023].

Ašeriškis, D. and Damaševičius, R., 2017. Computational evaluation of effects of

motivation reinforcement on player retention. Journal of Universal Computer

Science, 23(5), pp.432-453. [accessed 30 April 2024].

Aslinger, B., 2009. Genre in Genre: The Role of Music in Music Games. In DiGRA

Conference. [accessed 27 April 2024].

Atanasov, S., 2013. Juiciness: Exploring and designing around experience of

feedback in video games. [accessed 27 March 2024].

Aversa, D. and Dickinson, C., 2019. Unity Game Optimization: Enhance and extend

the performance of all aspects of your Unity games. Packt Publishing Ltd. [accessed

25 March 2024].

Barbiere, J.M., Vidal, A. and Zellner, D.A., 2007. The color of music:

Corresponence through emotion. Empirical studies of the arts, 25(2), pp.193-208.

[accessed 23 October 2023].

Bégel, V., Di Loreto, I., Seilles, A. and Dalla Bella, S., 2017. Music games:

potential application and considerations for rhythmic training. Frontiers in human

neuroscience, 11, p.273. [accessed 26 March 2024].

Bench, S.W. and Lench, H.C., 2013. On the function of boredom. Behavioral

sciences, 3(3), pp.459-472. [accessed 30 April 2024].

117

Biehl, M., 2016. RESTful Api Design (Vol. 3). API-University Press. [accessed 1

April 2024].

Blesser, B., 2007. The seductive (yet destructive) appeal of loud music. Retrieved

August, 1, p.2012. [accessed 24 January 2024].

Bourhis, P., Reutter, J.L., Suárez, F. and Vrgoč, D., 2017, May. JSON: data model,

query languages and schema specification. In Proceedings of the 36th ACM

SIGMOD-SIGACT-SIGAI symposium on principles of database systems (pp. 123-

135). [accessed 26 March 2024].

Bowman, D.A. and McMahan, R.P., 2007. Virtual reality: how much immersion is

enough?. Computer, 40(7), pp.36-43. [accessed 30 April 2024].

Brace Yourself Games (2015) Crypt of the NecroDancer [game]. Vancouver: Klei

Entertainment. Available from

https://store.steampowered.com/app/247080/Crypt_of_the_NecroDancer/

[accessed 18 October 2023].

Brockmyer, J.H., Fox, C.M., Curtiss, K.A., McBroom, E., Burkhart, K.M. and

Pidruzny, J.N., 2009. The development of the Game Engagement Questionnaire: A

measure of engagement in video game-playing. Journal of experimental social

psychology, 45(4), pp.624-634. [accessed 6th February 2024].

Brown, E. and Cairns, P., 2004, April. A grounded investigation of game

immersion. In CHI'04 extended abstracts on Human factors in computing systems

(pp. 1297-1300). [accessed 24 January 2024].

Bueno, J., 2017. Development of Unity 3D Module For REST API Integration:

Unity 3D and REST API Technology. [accessed 28 March 2024].

Byrne, J. (2023) ‘Can the use of more musical features in live gameplay lead to

more immersive rhythm games?’ CMP9056M: MComp Research Project.

University of Lincoln. Unpublished assignment. [accessed 28 April 2024].

Byrne, J. (2024) ‘Project Interim Report: Can the use of more musical features in

live gameplay lead to more immersive rhythm games?’ CMP9056M: MComp

Research Project. University of Lincoln. Unpublished assignment. [accessed 28

April 2024].

https://store.steampowered.com/app/247080/Crypt_of_the_NecroDancer/

118

Cabanac, M., 2002. What is emotion?. Behavioural processes, 60(2), pp.69-83.

[accessed 28 April 2024].

Caroux, L., Isbister, K., Le Bigot, L. and Vibert, N., 2015. Player–video game

interaction: A systematic review of current concepts. Computers in human

behavior, 48, pp.366-381. [accessed 27 April 2024].

Caroux, L., Le Bigot, L. and Vibert, N., 2011. Maximizing players’ anticipation by

applying the proximity-compatibility principle to the design of video games.

Human Factors, 53(2), pp.103-117. [accessed 27 April 2024].

Cassidy, G. and MacDonald, R., 2009. The effects of music choice on task

performance: A study of the impact of self-selected and experimenter-selected

music on driving game performance and experience. Musicae Scientiae, 13(2),

pp.357-386. [accessed 22 October 2023].

Chanel, G., Rebetez, C., Bétrancourt, M. and Pun, T., 2008, October. Boredom,

engagement and anxiety as indicators for adaptation to difficulty in games. In

Proceedings of the 12th international conference on Entertainment and media in the

ubiquitous era (pp. 13-17). [accessed 30 January 2024].

Chanel, G., Rebetez, C., Bétrancourt, M. and Pun, T., 2011. Emotion assessment

from physiological signals for adaptation of game difficulty. IEEE Transactions on

Systems, Man, and Cybernetics-Part A: Systems and Humans, 41(6), pp.1052-

1063. [accessed 30 January 2024].

Charbonneau, E., Miller, A., Wingrave, C. and LaViola Jr, J.J., 2009, August.

Understanding visual interfaces for the next generation of dance-based rhythm

video games. In Proceedings of the 2009 ACM SIGGRAPH Symposium on Video

Games (pp. 119-126). [accessed 26 March 2024].

Chen, C.H. and Lo, C.S., 2016, November. The development of a music rhythm

game with a higher level of playability. In 2016 International Conference on

Advanced Materials for Science and Engineering (ICAMSE) (pp. 132-135). IEEE.

[accessed 27 March 2024].

Cheng, K. and Cairns, P.A., 2005, April. Behaviour, realism and immersion in

games. In CHI'05 extended abstracts on Human factors in computing systems (pp.

1272-1275). [accessed 15 April 2024].

119

Christopoulou, E. and Xinogalos, S., 2017. Overview and comparative analysis of

game engines for desktop and mobile devices. [accessed 18 October 2024].

Chocolatey Software (2011) Chocolatey [software]. Available from

https://chocolatey.org/ [accessed 10 February 2024].

Ciuha, P., Klemenc, B. and Solina, F., 2010, October. Visualization of concurrent

tones in music with colours. In Proceedings of the 18th ACM international

conference on Multimedia (pp. 1677-1680). [accessed 23 October 2023].

Cooper, N. (2023) Hitting the Right Notes: Tying Gameplay to Music in Soundfall.

In: GDC 2023, 20-24 March, San Francisco. Available from

https://gdcvault.com/play/1029186/Independent-Games-Summit-Hitting-the

[accessed 29 October 2023].

Costello, B.M., 2018. The rhythm of game interactions: player experience and

rhythm in minecraft and don’t starve. Games and Culture, 13(8), pp.807-824.

[accessed 26 March 2024].

Cowley, B., Charles, D., Black, M. and Hickey, R., 2008. Toward an understanding

of flow in video games. Computers in Entertainment (CIE), 6(2), pp.1-27. [accessed

25 March 2024].

Denisova, A. and Cook, E., 2019, October. Power-ups in digital games: The

rewarding effect of phantom game elements on player experience. In Proceedings

of the Annual Symposium on computer-human interaction in Play (pp. 161-168).

[accessed 27 March 2024].

Denisova, A., Nordin, A.I. and Cairns, P., 2016, October. The convergence of

player experience questionnaires. In Proceedings of the 2016 Annual Symposium

on Computer-Human Interaction in Play (pp. 33-37). [accessed 6th February 2024].

Dickinson, C., 2017. Unity 2017 Game Optimization: Optimize All Aspects of

Unity Performance. Packt Publishing Ltd. [accessed 25 March 2024].

Dinh, D. and Wang, Z., 2020. Modern front-end web development: how libraries

and frameworks transform everything. [accessed 1 April 2024].

Dormans, J., 2012. Engineering emergence: applied theory for game design.

[accessed 24 March 2024].

https://chocolatey.org/
https://gdcvault.com/play/1029186/Independent-Games-Summit-Hitting-the

120

Drastic Games (2022) Soundfall [game]. Raleigh: Noodlecake. Available from

https://store.steampowered.com/app/1608700/Soundfall/ [accessed 29 October

2023].

Dylan Fitterer (2008) AudioSurf [game]. Dylan Fitterer. Available from

https://store.steampowered.com/app/12900/AudioSurf/ [accessed 18 October

2023].

Edworthy, J. and Waring, H., 2006. The effects of music tempo and loudness level

on treadmill exercise. Ergonomics, 49(15), pp.1597-1610. [accessed 24 January

2024].

El-Nasr, M.S. and Yan, S., 2006, June. Visual attention in 3D video games. In

Proceedings of the 2006 ACM SIGCHI international conference on Advances in

computer entertainment technology (pp. 22-es). [accessed 26 March 2024].

Electric Light Orchestra (1981) Twilight [download]. 3 mins. 42 secs. Time.

Munich: Jet. [accessed 10 March 2024].

Ermi, L. and Mäyrä, F., 2005, June. Fundamental components of the gameplay

experience: Analysing immersion. In DiGRA Conference (pp. 7-8). [accessed 4

May 2024].

Ffmpeg Team (2000) ffmpeg. [software]. Available from: https://ffmpeg.org/

[accessed 10 February 2024].

Fierro, A., 2012. Musical rhythm: How musical rhythm in a serious game can

increase the immersion and how the immersion can encourage the rehabilitation

process. [accessed 22 October 2023].

Floraphonic (undated) Punch 6 [download]. 1 secs. Available from

https://pixabay.com/sound-effects/punch-6-166699/ [accessed 7 May 2024].

Fonteles, J.H., Rodrigues, M.A.F. and Basso, V.E.D., 2013. Creating and evaluating

a particle system for music visualization. Journal of Visual Languages &

Computing, 24(6), pp.472-482. [accessed 23 October 2023].

FromSoftware (2011) Dark Souls [game]. Tokyo: Namco Bandai Games [accessed

26 April 2024].

https://store.steampowered.com/app/1608700/Soundfall/
https://store.steampowered.com/app/12900/AudioSurf/
https://ffmpeg.org/
https://pixabay.com/sound-effects/punch-6-166699/

121

FromSoftware (2012) Steel Battalion: Heavy Armor [game]. Tokyo: Capcom

[accessed 7 May 2024].

Fuchs, R. and Maxwell, O., 2016. The effects of mp3 compression on acoustic

measurements of fundamental frequency and pitch range. In Speech prosody (Vol.

2016, pp. 523-527). [accessed 1 April 2024].

Fullerton, T., 2014. Game design workshop: a playcentric approach to creating

innovative games. CRC press. [accessed 27 March 2024].

Gil, S. and Le Bigot, L., 2016. Colour and emotion: children also associate red with

negative valence. Developmental science, 19(6), pp.1087-1094. [accessed 26

March 2024].

Glassy, L., 2006. Using version control to observe student software development

processes. Journal of Computing Sciences in Colleges, 21(3), pp.99-106. [accessed

1 April 2024].

Goel, A., 2021. Best Programming Language to Learn in 2020 (for Job & Future).

hackr. io, 11(05). [accessed 1 April 2024].

Goldmetal (2023) Undead Survivor Assets Pack [asset]. Unity Asset Store.

Available from https://assetstore.unity.com/packages/2d/undead-survivor-assets-

pack-238068 [accessed 8 December 2023].

Grimshaw, M., Lindley, C. and Nacke, L., 2008. Sound and immersion in the first-

person shooter: Mixed measurement of the player's sonic experience. In Audio

Mostly-a conference on interaction with sound. www. audiomostly. Com. [accessed

24 January 2024].

Guardiola, E., 2016, November. The gameplay loop: a player activity model for

game design and analysis. In Proceedings of the 13th International Conference on

Advances in Computer Entertainment Technology (pp. 1-7). [accessed 6 May

2024].

Guzsvinecz, T., 2023. The correlation between positive reviews, playtime, design

and game mechanics in souls-like role-playing video games. Multimedia Tools and

Applications, 82(3), pp.4641-4670. [accessed 26 April 2024].

https://assetstore.unity.com/packages/2d/undead-survivor-assets-pack-238068
https://assetstore.unity.com/packages/2d/undead-survivor-assets-pack-238068

122

Hastings, E.J., Guha, R.K. and Stanley, K.O., 2008. Interactive evolution of particle

systems for computer graphics and animation. IEEE Transactions on Evolutionary

Computation, 13(2), pp.418-432. [accessed 26 March 2024].

Hein, E., 2014. Music games in education. Learning, Education and Games, p.93.

[accessed 29 October 2023].

Hicks, K., Gerling, K., Dickinson, P. and Vanden Abeele, V., 2019, October. Juicy

game design: Understanding the impact of visual embellishments on player

experience. In Proceedings of the annual symposium on computer-human

interaction in play (pp. 185-197). [accessed 27 March 2024].

Higgins, S., 2003. A new colour consciousness: Colour in the digital age.

Convergence, 9(4), pp.60-76. [accessed 28 April 2024].

Hock, K.S. and Lingxia, L.I., 2014. Automated processing of massive audio/video

content using FFmpeg. Code4Lib Journal, (23). [accessed 1 April 2024].

Holmquist, L.E., Redström, J. and Ljungstrand, P., 1999. Token-based access to

digital information. In Handheld and Ubiquitous Computing: First International

Symposium, HUC’99 Karlsruhe, Germany, September 27–29, 1999 Proceedings 1

(pp. 234-245). Springer Berlin Heidelberg. [accessed 25 March 2024].

Hultstrand, S. and Olofsson, R., 2015. Git-cli or gui: Which is most widely used

and why?. [accessed 1 April 2024].

Hunicke, R., LeBlanc, M. and Zubek, R., 2004, July. MDA: A formal approach to

game design and game research. In Proceedings of the AAAI Workshop on

Challenges in Game AI (Vol. 4, No. 1, p. 1722). [accessed 6 May 2024].

Izgi, E., 2018. Framework for Roguelike Video Games Development. [accessed 25

March 2024].

Jennett, C., Cox, A.L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T. and Walton, A.,

2008. Measuring and defining the experience of immersion in games. International

journal of human-computer studies, 66(9), pp.641-661. [accessed 6th February

2024].

123

JJMaslen (2024) Walk With Rhythm [game]. Lincoln: Avaliable from

https://github.com/JJMaslen/WalkWithRhythm [accessed 25th January 2024].

JMP Statistical Discovery (undated) The Two-Sample t-Test JMP Statistical

Discovery. Available from https://www.jmp.com/en_gb/statistics-knowledge-

portal/t-test/two-sample-t-test.html [accessed 26 April 2024].

Johnson, D., 2015. Animated frustration or the ambivalence of player agency.

Games and Culture, 10(6), pp.593-612. [accessed 7 May 2024].

Joosten, E., Van Lankveld, G. and Spronck, P., 2010. Colors and emotions in video

games. In 11th International Conference on Intelligent Games and Simulation

GAME-ON (pp. 61-65). sn. [accessed 23 October 2023].

Joy Division (1979) She’s Lost Control [download]. 3 mins. 57 secs. Unknown

Pleasures. Stockport: Factory. [accessed 10 March 2024].

Kagan, B., 2020. Slave to the Rhythm: Examining immersive experiences through

the interplay of music and gameplay in “Crypt of The Necrodancer. [accessed 19

October 2023].

Kanode, C.M. and Haddad, H.M., 2009, April. Software engineering challenges in

game development. In 2009 Sixth International Conference on Information

Technology: New Generations (pp. 260-265). IEEE. [accessed 29 March 2024].

Kao, D., 2020. The effects of juiciness in an action RPG. Entertainment Computing,

34, p.100359. [accessed 27 March 2024].

Karlesky, M. and Vander Voord, M., 2008. Agile project management. ESC,

247(267), p.4. [accessed 29 March 2024].

Kauranen, A., 2023. How colours guide the player in video games. [accessed 23

January 2024].

Knauert, M., Jeon, S., Murphy, T.E., Yaggi, H.K., Pisani, M.A. and Redeker, N.S.,

2016. Comparing average levels and peak occurrence of overnight sound in the

medical intensive care unit on A-weighted and C-weighted decibel scales. Journal

of critical care, 36, pp.1-7. [accessed 27 March 2024].

https://github.com/JJMaslen/WalkWithRhythm
https://www.jmp.com/en_gb/statistics-knowledge-portal/t-test/two-sample-t-test.html
https://www.jmp.com/en_gb/statistics-knowledge-portal/t-test/two-sample-t-test.html

124

Koleva, B., Tolmie, P., Brundell, P., Benford, S. and Rennick Egglestone, S., 2015,

October. From front-end to back-end and everything in-between: work practice in

game development. In Proceedings of the 2015 Annual Symposium on Computer-

Human Interaction in Play (pp. 141-150). [accessed 1 April 2024].

Kortmann, R. and Harteveld, C., 2009. Agile game development: lessons learned

from software engineering. In Learn to game, game to learn; the 40th conference

ISAGA. [accessed 29 March 2024].

Kristiadi, D.P., Sudarto, F., Sugiarto, D., Sambera, R., Warnars, H.L.H.S. and

Hashimoto, K., 2019, November. Game development with scrum methodology. In

2019 International Congress on Applied Information Technology (AIT) (pp. 1-6).

IEEE. [accessed 29 March 2024].

Large, E.W. and Palmer, C., 2002. Perceiving temporal regularity in music.

Cognitive science, 26(1), pp.1-37. [accessed 27 April 2024].

Lazzaro, N., 2009. Why we play: affect and the fun of games. Human-computer

interaction: Designing for diverse users and domains, 155, pp.679-700. [accessed

26 April 2024].

Lin, R.M., Ho, H.C. and Chen, K.T., 2011, November. Bot detection in rhythm

games: a physiological approach. In Proceedings of the 8th International

Conference on Advances in Computer Entertainment Technology (pp. 1-8).

[accessed 25 March 2024].

Lindborg, P. and Friberg, A.K., 2015. Colour association with music is mediated by

emotion: Evidence from an experiment using a CIE Lab interface and interviews.

PloS one, 10(12), p.e0144013. [accessed 23 October 2023].

Lindholm, T., Yellin, F., Bracha, G. and Buckley, A., 2013. The Java virtual

machine specification. Addison-wesley. [accessed 3 May 2024].

Lindman, J., Horkoff, J., Hammouda, I. and Knauss, E., 2018. Emerging

perspectives of application programming interface strategy: A framework to

respond to business concerns. IEEE software, 37(2), pp.52-59. [accessed 18

October 2023].

125

Llanos, S.C. and Jørgensen, K., 2011, September. Do players prefer integrated user

interfaces? A qualitative study of game UI design issues. In Proceedings of DiGRA

2011 Conference: Think Design Play (pp. 1-12). [accessed 1 April 2024].

Lu, H.K., 2014, June. Keeping your API keys in a safe. In 2014 IEEE 7th

International Conference on Cloud Computing (pp. 962-965). IEEE. [accessed 25

March 2024].

Madden, N., 2020. API security in action. Simon and Schuster. [accessed 25 March

2024].

Mammarella, N., Di Domenico, A., Palumbo, R. and Fairfield, B., 2016. When

green is positive and red is negative: Aging and the influence of color on emotional

memories. Psychology and aging, 31(8), p.914. [accessed 26 March 2024].

McKenzie, T., Morales-Trujillo, M., Lukosch, S. and Hoermann, S., 2021, May. Is

agile not agile enough? A study on how agile is applied and misapplied in the video

game development industry. In 2021 IEEE/ACM Joint 15th International

Conference on Software and System Processes (ICSSP) and 16th ACM/IEEE

International Conference on Global Software Engineering (ICGSE) (pp. 94-105).

IEEE. [accessed 1 April 2024].

MGMT (2017) Little Dark Age [download]. 4 mins 59 secs. Little Dark Age.

Columbia. [accessed 10 March 2024].

Milentijevic, I., Ciric, V. and Vojinovic, O., 2008. Version control in project-based

learning. Computers & Education, 50(4), pp.1331-1338. [accessed 1 April 2024].

Miller, B.J., 2013. Music learning through video games and apps: Guitar Hero,

Rock Band, amplitude, frequency, and Rocksmith, and bandfuse, and bit. Trip

complete, and audiosurf, and beat hazard, and biophilia. American Music, 31(4),

pp.511-514. [accessed 28 April 2024].

Mindrila, D., Balentyne, P. and from a Table, S., 2013. Tests of Significance. The

Basic Practice of Statistics, pp.2-12. [accessed 26 April 2024].

Misztal, S., Carbonell, G., Zander, L. and Schild, J., 2020, September. Intensifying

Stress Perception Using Visual Effects in VR Games. In Proceedings of the 15th

International Conference on the Foundations of Digital Games (pp. 1-4). [accessed

27 April 2024].

126

Mixkit (undated) Bass guitar single note [download]. 6 secs. Available from

https://mixkit.co/free-sound-effects/bass/ [accessed 7 May 2024].

Munday, R., 2007. Music in video games. Music, sound and multimedia: From the

live to the virtual, pp.51-67. [accessed 18 October 2023].

NanaOn-Sha (1999) Vib-Ribbon [game]. Tokyo: Sony Computer Entertainment.

[accessed 18 October 2023].

Neil, K., 2012. Game design tools: Time to evaluate. Proceedings of 2012 DiGRA

Nordic. [accessed 29 March 2024].

Nguyen, T.D., Nguyen, A.T., Phan, H.D. and Nguyen, T.N., 2017, May. Exploring

API embedding for API usages and applications. In 2017 IEEE/ACM 39th

International Conference on Software Engineering (ICSE) (pp. 438-449). IEEE.

[accessed 1 April 2024].

Nordin, A.I., Denisova, A. and Cairns, P., 2014. Too many questionnaires:

measuring player experience whilst playing digital games. [accessed 6th February

2024].

Nusrat, F., Hassan, F., Zhong, H. and Wang, X., 2021, May. How developers

optimize virtual reality applications: A study of optimization commits in open

source unity projects. In 2021 IEEE/ACM 43rd International Conference on

Software Engineering (ICSE) (pp. 473-485). IEEE. [accessed 25 March 2024].

Parra, J., Lopes da Silva, F.H., Stroink, H. and Kalitzin, S., 2007. Is colour

modulation an independent factor in human visual photosensitivity?. Brain,

130(6), pp.1679-1689. [accessed 3 May 2024].

Phellas, C.N., Bloch, A. and Seale, C., 2011. Structured methods: interviews,

questionnaires and observation. Researching society and culture, 3(1), pp.23-32.

[accessed 6th February 2024].

Pichlmair, M. and Kayali, F., 2007, September. Levels of Sound: On the Principles

of Interactivity in Music Video Games. In DiGRA Conference. [accessed 18

October 2023].

https://mixkit.co/free-sound-effects/bass/

127

Pixabay (undated) snapping ruler vibration [download]. 8 secs. Available from

https://pixabay.com/sound-effects/snapping-ruler-vibration-107426/ [accessed 7

May 2024].

Plans, D. and Morelli, D., 2012. Experience-driven procedural music generation for

games. IEEE Transactions on Computational Intelligence and AI in Games, 4(3),

pp.192-198. [accessed 30 January 2024].

Poncle (2022) Vampire Survivors [game]. Italy: Poncle Available from

https://store.steampowered.com/app/1794680/Vampire_Survivors/ [accessed 25

March 2024].

Povel, D.J., 1984. A theoretical framework for rhythm perception. Psychological

research, 45(4), pp.315-337. [accessed 29 March 2024].

Pravossoudovitch, K., Cury, F., Young, S.G. and Elliot, A.J., 2014. Is red the colour

of danger? Testing an implicit red–danger association. Ergonomics, 57(4), pp.503-

510. [accessed 26 March 2024].

Qin, H., Rau, P.L.P. and Salvendy, G., 2010. Effects of different scenarios of game

difficulty on player immersion. Interacting with computers, 22(3), pp.230-239.

[accessed 2 April 2024].

Radiohead (2007) Reckoner [download]. 4 mins. 50 secs. In Rainbows. XL.

[accessed 10 February 2024].

Ravaja, N., Saari, T., Salminen, M., Laarni, J. and Kallinen, K., 2006. Phasic

emotional reactions to video game events: A psychophysiological investigation.

Media psychology, 8(4), pp.343-367. [accessed 27 April 2024].

Rouder, J.N., Speckman, P.L., Sun, D., Morey, R.D. and Iverson, G., 2009.

Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic

bulletin & review, 16, pp.225-237. [accessed 26 April 2024].

Sainani, K.L., 2012. Dealing with non-normal data. Pm&r, 4(12), pp.1001-1005.

[accessed 2 May 2024].

Sampath, H., Merrick, A. and Macvean, A., 2021, May. Accessibility of command

line interfaces. In Proceedings of the 2021 CHI conference on human factors in

computing systems (pp. 1-10). [accessed 1 April 2024].

https://pixabay.com/sound-effects/snapping-ruler-vibration-107426/
https://store.steampowered.com/app/1794680/Vampire_Survivors/

128

Sanders, T. and Cairns, P., 2010. Time perception, immersion and music in

videogames. Proceedings of HCI 2010 24, pp.160-167. [accessed 6th February

2024].

Schacher, J.C. and Neukom, M., 2007. Where's the beat? Tools for Dynamic Tempo

calculations. In ICMC. [accessed 25 March 2024].

Schild, J., Walter, R. and Masuch, M., 2010, June. ABC-Sprints: adapting Scrum to

academic game development courses. In Proceedings of the fifth international

conference on the foundations of digital games (pp. 187-194). [accessed 28 April

2024].

Schwaber, K., 1997. Scrum development process. In Business Object Design and

Implementation: OOPSLA’95 Workshop Proceedings 16 October 1995, Austin,

Texas (pp. 117-134). Springer London. [accessed 29 March 2024].

Schwartz, L., 2006. Fantasy, realism, and the other in recent video games. Space

and culture, 9(3), pp.313-325. [accessed 15 April 2024].

Sega AM2 (1999) Shenmue [game]. Tokyo: Sega [accessed 15 April 2024].

Sharma, M., Kacker, S. and Sharma, M., 2016. A brief introduction and review on

galvanic skin response. Int J Med Res Prof, 2(6), pp.13-17. [accessed 2 April 2024].

Shelton, J. and Kumar, G.P., 2010. Comparison between auditory and visual simple

reaction times. Neuroscience and medicine, 1(01), pp.30-32. [accessed 25 March

2024].

Sloboda, J.A. and Juslin, P.N., 2001. Psychological perspectives on music and

emotion. Music and emotion: Theory and research, pp.71-104. [accessed 24 January

2024].

Smucker, M.D., Allan, J. and Carterette, B., 2007, November. A comparison of

statistical significance tests for information retrieval evaluation. In Proceedings of

the sixteenth ACM conference on Conference on information and knowledge

management (pp. 623-632). [accessed 1 April 2024].

Snedecor, G.W. and Cochran, W.G., 1989. Statistical Methods, eight edition. Iowa

state University press, Ames, Iowa, 1191(2). [accessed 26 April 2024].

129

Song, D.H., Kim, K.B. and Lee, J.H., 2019. Analysis and evaluation of mobile

rhythm games: game structure and playability. International Journal of Electrical

and Computer Engineering, 9(6), p.5263. [accessed 28 April 2024].

Spotify (undated) Access Token. Stockholm: Spotify. Available from

https://developer.spotify.com/documentation/web-api/concepts/access-token

[accessed 25 March 2024].

Spotify (undated) Apps. Stockholm: Spotify. Available from

https://developer.spotify.com/documentation/web-api/concepts/apps [accessed 25

March 2024].

Spotify (undated) Client Credentials Flow. Stockholm: Spotify Available from

https://developer.spotify.com/documentation/web-api/tutorials/client-credentials-

flow [accessed 25 March 2024].

Spotify (undated) Get Artist’s Top Tracks. Stockholm: Spotify. Available from

https://developer.spotify.com/documentation/web-api/reference/get-an-artists-top-

tracks [accessed 25 March 2024].

Spotify (undated) Get Track’s Audio Analysis. Stockholm: Spotify. Available from

https://developer.spotify.com/documentation/web-api/reference/get-audio-analysis

[accessed 25 March 2024].

Spotify (undated) Search for Item. Stockholm: Spotify. Available from

https://developer.spotify.com/documentation/web-api/reference/search [accessed

25 March 2024].

Stencel, K. and Węgrzynowicz, P., 2008, November. Implementation variants of

the singleton design pattern. In OTM Confederated International Conferences" On

the Move to Meaningful Internet Systems" (pp. 396-406). Berlin, Heidelberg:

Springer Berlin Heidelberg. [accessed 25 March 2024].

SURT (2023) Rhythm Sprout: Sick Beats & Bad Sweets. [game]. Available from

https://store.steampowered.com/app/1475840/Rhythm_Sprout_Sick_Beats__Bad_

Sweets/ [accessed 29 March 2024].

Sweetser, P. and Johnson, D., 2004, September. Player-centered game

environments: Assessing player opinions, experiences, and issues. In International

https://developer.spotify.com/documentation/web-api/concepts/access-token
https://developer.spotify.com/documentation/web-api/concepts/apps
https://developer.spotify.com/documentation/web-api/tutorials/client-credentials-flow
https://developer.spotify.com/documentation/web-api/tutorials/client-credentials-flow
https://developer.spotify.com/documentation/web-api/reference/get-an-artists-top-tracks
https://developer.spotify.com/documentation/web-api/reference/get-an-artists-top-tracks
https://developer.spotify.com/documentation/web-api/reference/get-audio-analysis
https://developer.spotify.com/documentation/web-api/reference/search
https://store.steampowered.com/app/1475840/Rhythm_Sprout_Sick_Beats__Bad_Sweets/
https://store.steampowered.com/app/1475840/Rhythm_Sprout_Sick_Beats__Bad_Sweets/

130

Conference on Entertainment Computing (pp. 321-332). Berlin, Heidelberg:

Springer Berlin Heidelberg. [accessed 30 April 2024].

Sweetser, P. and Wyeth, P., 2005. GameFlow: a model for evaluating player

enjoyment in games. Computers in Entertainment (CIE), 3(3), pp.3-3. [accessed 19

October 2023].

Swink, S., 2008. Game feel: a game designer's guide to virtual sensation. CRC

press. [accessed 26 March 2024].

System of a Down (2001) Shimmy [download]. 1 min. 51 secs. Toxicity.

Hollywood: Columbia. [accessed 10 March 2024].

Sziklai, I., Szilvássy, J. and Szilvássy, Z., 2011. Tinnitus control by dopamine

agonist pramipexole in presbycusis patients: A randomized, placebo‐controlled,

double‐blind study. The Laryngoscope, 121(4), pp.888-893. [accessed 27 March

2024].

Tanskanen, S., 2018. Player immersion in video game: Designing an immersive

game project. [accessed 23 January 2024].

Thompson, M., Nordin, A.I. and Cairns, P., 2012, September. Effect of Touch–

Screen Size on Game Immersion. In The 26th BCS Conference on Human

Computer Interaction. BCS Learning & Development. [accessed 1 April 2024].

Tsujino, Y., Yamanishi, R. and Yamashita, Y., 2019, August. Characteristics study

of dance-charts on rhythm-based video games. In 2019 IEEE Conference on Games

(CoG) (pp. 1-4). IEEE. [accessed 22 October 2023].

Ttable.org (undated) T Table Available from https://www.ttable.org/ [accessed 26

April 2024].

Unity (2015) Why when I change the color of text from script, it becomes White?

San Francisco: Unity. Available from https://discussions.unity.com/t/why-when-i-

change-the-color-of-text-from-script-it-becomes-white/128250 [accessed 5 March

2024].

Unity (undated) Audio Files San Francisco: Unity. Available from

https://docs.unity3d.com/Manual/AudioFiles.html [accessed 1 April 2024].

https://www.ttable.org/
https://discussions.unity.com/t/why-when-i-change-the-color-of-text-from-script-it-becomes-white/128250
https://discussions.unity.com/t/why-when-i-change-the-color-of-text-from-script-it-becomes-white/128250
https://docs.unity3d.com/Manual/AudioFiles.html

131

Unity (undated) Bloom. San Francisco: Unity. Available from

https://docs.unity3d.com/560/Documentation/Manual/PostProcessing-Bloom.html

[accessed 26 March 2024].

Unity (undated) Channel Mixer. San Francisco: Unity. Available from

https://docs.unity3d.com/Packages/com.unity.render-

pipelines.universal@7.1/manual/Post-Processing-Channel-Mixer.html [accessed

26 March 2024].

Unity (undated) Film Grain. San Francisco: Unity. Available from

https://docs.unity3d.com/Packages/com.unity.render-

pipelines.universal@7.1/manual/Post-Processing-Film-Grain.html [accessed 27

March 2024].

Unity (undated) JsonUtility.FromJson. San Francisco: Unity. Available from

https://docs.unity3d.com/ScriptReference/JsonUtility.FromJson.html [accessed 26

March 2024].

Unity (undated) ParticleSystem. San Francisco: Unity Available from

https://docs.unity3d.com/ScriptReference/ParticleSystem.html [accessed 24 March

2024].

Unity (undated) Python Scripting. San Francisco: Unity. Available from

https://docs.unity3d.com/Packages/com.unity.scripting.python@6.0/manual/index

.html [accessed 25 March 2024].

Unity (undated) Time.deltaTime. San Francisco: Unity. Available from

https://docs.unity3d.com/ScriptReference/Time-deltaTime.html [accessed 25

March 2024].

University of Sussex (2005) Table of critical values for the F distribution (for use

with ANOVA) Falmer: University of Sussex. Available from

https://users.sussex.ac.uk/~grahamh/RM1web/F-ratio%20table%202005.pdf

[accessed 26 April 2024].

Vickers, E., 2010, November. The loudness war: Background, speculation, and

recommendations. In Audio Engineering Society Convention 129. Audio

Engineering Society. [accessed 28 April 2024].

https://docs.unity3d.com/560/Documentation/Manual/PostProcessing-Bloom.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@7.1/manual/Post-Processing-Channel-Mixer.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@7.1/manual/Post-Processing-Channel-Mixer.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@7.1/manual/Post-Processing-Film-Grain.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@7.1/manual/Post-Processing-Film-Grain.html
https://docs.unity3d.com/ScriptReference/JsonUtility.FromJson.html
https://docs.unity3d.com/ScriptReference/ParticleSystem.html
https://docs.unity3d.com/Packages/com.unity.scripting.python@6.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.scripting.python@6.0/manual/index.html
https://docs.unity3d.com/ScriptReference/Time-deltaTime.html
https://users.sussex.ac.uk/~grahamh/RM1web/F-ratio%20table%202005.pdf

132

Welch, D. and Fremaux, G., 2017. Why do people like loud sound? A qualitative

study. International journal of environmental research and public health, 14(8),

p.908. [accessed 30 January 2024].

Xing, Y., Huang, J. and Lai, Y., 2019, February. Research and analysis of the front-

end frameworks and libraries in e-business development. In Proceedings of the

2019 11th International Conference on Computer and Automation Engineering (pp.

68-72). [accessed 1 April 2024].

Zammitto, V., 2005, June. The Expressions of Colours. In DiGRA Conference.

[accessed 23 October 2023].

Zhang, C., Perkis, A. and Arndt, S., 2017, May. Spatial immersion versus emotional

immersion, which is more immersive?. In 2017 Ninth International Conference on

Quality of Multimedia Experience (QoMEX) (pp. 1-6). IEEE. [accessed 30 January

2024].

Zheng, H., 2022. Effects of Music Tempo on Flow in Rhythm-Fighting Game

(Doctoral dissertation, Northeastern University). [accessed 19 October 2023].

Zolkifli, N.N., Ngah, A. and Deraman, A., 2018. Version control system: A review.

Procedia Computer Science, 135, pp.408-415. [accessed 1 April 2024].

Zong and Shannon (2023) Rhythm Hell. [game]. Available from

https://rhythmhell.itch.io/rhythm-hell [accessed 27 March 2024].

https://rhythmhell.itch.io/rhythm-hell

133

Appendix A – Game Design

Document

Design Document

The general idea for the game will be to develop a rhythm game that co-ops the

dungeon crawler style of gameplay. A similar example of this would be Crypt of

the NecroDancer. Like Crypt, there should be different enemies to vary the

gameplay by having different attack and movement styles. Unlike Crypt, this

game will test the player’s ability on how long they can survive in the singular

dungeon, which will be based on how long the song plays for. Like Crypt

however, the way in which the player moves and attacks enemies will all be done

in time with the rhythm of the song.

Using audio features

Looking at Spotify’s get track’s audio analysis function the following song

information will be used in the following ways:

https://developer.spotify.com/documentation/web-api/reference/get-audio-

analysis

Duration: This will be how long the level lasts overall as it is the songs length

End_of_fade_in/start_of_fade_out: As these relate to when a song will fade in and

out there is a possibility the same effect could be done to the game itself i.e have

the game fade in from black, slowly having the light radius of the game increase

as the song starts to fade in and do the opposite as the song fades out.

Tempo: This refers to the average tempo of the song, however in order to ensure

the players actions are mapped accurately to the rhythm a different algorithm

should be employed instead, such as the one in soundfall

Time_signature: This could be used for the frequency of enemy spawns

Key: This will affect the colour grading of the game as different keys correspond

to different colours

There are different sections to every song, defined by Spotify as “large variations

in rhythm or timbre e.g chorus, verse etc” These contain different values for the

values defined above and will be used to vary the game overtime.

Segments are defined by Spotify as having “a roughly consistent sound throughout

its duration” and have pitches and timbre which will be explored later.

Enemies

https://developer.spotify.com/documentation/web-api/reference/get-audio-analysis
https://developer.spotify.com/documentation/web-api/reference/get-audio-analysis

134

As the game will be based on crypt, there will be similar enemies to Crypt as well.

They can however all be killed in one hit. As stated the time signature will be used

to spawn enemies, however enemies will not spawn near the player, nor will they

spawn near other enemies. Loudness (which represents a more intense song) will

be used, with louder songs introducing stronger enemies in the spawn pool.

Skeleton: Moves one space every beat in the direction of the player

Bat: Moves to a random space every beat

Golem: Moves one space every beat and does splash damage on movement

Mage: Fires a projectile in horizontal/vertical direction of player

Mimic (Different enemy): Moves in the opposing direction of the player

Weapons

Player starts with a basic dagger however other weapons can spawn, such as a bow

which can shoot horizontally or vertically up to 4 tiles, a spear to attack up to two

tiles away and a broadsword which can attack within a 3 tile wide radius. (weapon

pool affect by instrumentalness)

So that the player will continually have new weapons to use, weapons will have

durability that will go down after use. Once a weapon breaks a new one will

automatically spawn that the player then moves towards

135

Appendix B – Core Game Loop

136

Appendix C – MDA Analysis

137

138

Appendix D - IEQ

Please answer the following questions by circling the relevant number. In

particular, remember that these questions are asking you about how you felt at the

end of the game.

1. To what extent did the game hold your attention?

Not at all 1 2 3 4 5 A lot

2. To what extent did you feel you were focused on the game?

Not at all 1 2 3 4 5 A lot

3. How much effort did you put into playing the game?

Very little 1 2 3 4 5 A lot

4. Did you feel that you were trying your best?

Not at all 1 2 3 4 5 Very much so

5. To what extent did you lose track of time?

Not at all 1 2 3 4 5 A lot

6. To what extent did you feel consciously aware of being in the real world

whilst playing?

Not at all 1 2 3 4 5 Very much so

7. To what extent did you forget about your everyday concerns?

Not at all 1 2 3 4 5 A lot

8. To what extent were you aware of yourself in your surroundings?

Not at all 1 2 3 4 5 Very aware

9. To what extent did you notice events taking place around you?

Not at all 1 2 3 4 5 A lot

139

10. Did you feel the urge at any point to stop playing and see what was happening

around you?

Not at all 1 2 3 4 5 Very much so

11. To what extent did you feel that you were interacting with the game

environment?

Not at all 1 2 3 4 5 Very much so

12. To what extent did you feel as though you were separated from your real-

world environment?

Not at all 1 2 3 4 5 Very much so

13. To what extent did you feel that the game was something you were

experiencing, rather than something you were just doing?

Not at all 1 2 3 4 5 Very much so

14. To what extent was your sense of being in the game environment stronger than

your sense of being in the real world?

Not at all 1 2 3 4 5 Very much so

15. At any point did you find yourself become so involved that you were unaware

you were even using controls?

Not at all 1 2 3 4 5 Very much so

16. To what extent did you feel as though you were moving through the game

according to your own will?

Not at all 1 2 3 4 5 Very much so

17. To what extent did you find the game challenging?

Not at all 1 2 3 4 5 Very difficult

18. Were there any times during the game in which you just wanted to give up?

Not at all 1 2 3 4 5 A lot

19. To what extent did you feel motivated while playing?

140

Not at all 1 2 3 4 5 A lot

20. To what extent did you find the game easy?

Not at all 1 2 3 4 5 Very much so

21. To what extent did you feel like you were making progress towards the end of

the game?

Not at all 1 2 3 4 5 A lot

22. How well do you think you performed in the game?

Very poor 1 2 3 4 5 Very well

23. To what extent did you feel emotionally attached to the game?

Not at all 1 2 3 4 5 Very much so

24. To what extent were you interested in seeing how the game’s events would

progress?

Not at all 1 2 3 4 5 A lot

25. How much did you want to ‘‘win’’ the game?

Not at all 1 2 3 4 5 Very much so

26. Were you in suspense about whether or not you would win or lose the game?

Not at all 1 2 3 4 5 Very much so

27. At any point did you find yourself become so involved that you wanted to

speak to the game directly?

Not at all 1 2 3 4 5 Very much so

28. To what extent did you enjoy the graphics and the imagery?

Not at all 1 2 3 4 5 A lot

29. How much would you say you enjoyed playing the game?

Not at all 1 2 3 4 5 A lot

141

30. When interrupted, were you disappointed that the game was over?

Not at all 1 2 3 4 5 Very much so

31. Would you like to play the game again?

Definitely not 1 2 3 4 5 Definitely yes

32. Did you feel emotionally different when playing the game?

Definitely not 1 2 3 4 5 Definitely yes

33. Did you ever want to stop playing the game at any point?

Definitely not 1 2 3 4 5 Definitely yes

34. Did you ever notice any differences during gameplay?

Definitely not 1 2 3 4 5 Definitely yes

35. Did the game feel intense?

Definitely not 1 2 3 4 5 Definitely yes

36. Did you enjoy the visuals of the game?

Definitely not 1 2 3 4 5 Definitely yes

For any of the questions above, please write a comment below detailing why you

felt this was the case.

142

Appendix E – Parent Enemy Class

143

Appendix F – Zombie Enemy Script

144

Appendix G – Mimic Controller

Script

145

Appendix H – Skeleton Controller

Script

146

Appendix I – Mage Controller Script

and Bullet Scripts

Mage

147

Bullet

148

Appendix J – Immersion Results for

Control and Experimental Games

Control

149

Experimental

150

Appendix K – Critical values in F

Table (University of Sussex, 2005)

151

Appendix L – Reckoner Results

Table

152

Appendix M – Twilight Results

Table

153

Appendix N - Little Dark Age

Results Table

154

Appendix O – Shimmy Results Table

155

Appendix P – She’s Lost Control

Results Table

