

Is it possible to create an algorithm that can

accurately predict a set of shots a director

should employ before creating a film?

Jonathan Byrne

BYR19702034

19702034@students.lincoln.ac.uk

School of Computer Science

College of Science

University of Lincoln

Submitted in partial fulfilment of the requirements for the

Degree of MComp Games Computing

Supervisor: Phil Carlisle

May 2023

i

Acknowledgements

I wish to thank my supervisor Phil Carlisle for his guidance during this project,

together with my parents and brother for helping with the structure of this dissertation

and their advice.

ii

Abstract

This dissertation describes the development of a recommendation system for film

shots with the aim of being used by both laypeople and professional directors. This

document contains an introduction as to why this system was created, a review of

literature similar to this project and how it influenced the aims and objectives, the

requirements for this project based on the literature review and the aims and

objectives, an outline of the design, tools and the software methodologies used, a

history of the implementation of this project followed by the results of testing and

finally the conclusion gathered from this project.

The Github repository for this project can be downloaded following this link:

https://github.com/JonBYR/Year3Project.git

Keywords: Unity, recommendation system, SCRUM, Agile methodologies,

Scrumban, waterfall, cinematography, previs, storyboard, Kanban, User Experience

Design, User Interface

https://github.com/JonBYR/Year3Project.git

iii

Table of Contents

Introduction .. 1

1.1 Background and Rationale .. 1

1.2 Dissertation Structure .. 4

Literature Review and Aims and Objectives .. 5

2.1 Literature Review .. 5

2.2 Aims & Objectives .. 9

Requirements Analysis ... 13

Design & Methodology .. 15

4.1 Project Plan ... 15

4.1.1 Initial Aim .. 15

4.1.2 Initial Objectives .. 15

4.1.3 The Changing Project Plan .. 16

4.2 Risk Analysis .. 19

4.3 Design ... 21

4.3.1 Front End ... 21

4.3.2 Back End .. 22

4.4 Toolsets and Machine Environments .. 22

4.4.1 Version Control ... 23

4.4.2 Visual Studio C# .. 24

4.5 Testing... 25

Implementation ... 28

5.1 Version 1 ... 28

5.2 Version 2 ... 31

5.3 Version 3 ... 36

5.4 Version 4 ... 38

iv

5.4.1 Model ... 39

5.4.2 View ... 40

5.4.3 Controller ... 41

5.5 Version 5 ... 42

5.6 Version 6 ... 45

Results & Discussion .. 48

6.1 Black Box Testing ... 48

6.2 Final Implementation .. 56

6.3 Results of Human Testing ... 59

6.3.1 Does the software fulfil the aim? ... 60

6.3.2 Does the software deliver a good user experience? ... 60

6.3.3 Further Comments ... 61

Conclusion .. 63

Word Count .. 67

References .. 68

Appendix A: Trello Boards .. 77

A.1 Second iteration ... 77

A.2 Third iteration .. 78

A.3 Fourth iteration .. 78

A.4 Fifth iteration ... 79

A.5 Sixth iteration ... 80

Appendix B ... 81

Appendix C ... 84

Appendix C.1 .. 84

Appendix C.2 .. 84

Appendix D ... 89

v

List of Figures

Figure 1: A figure to show different framing shots (Studiobinder, undated) 3

Figure 2: A figure showing an establishing shot used in the film Zulu (Endfield, 1964) 3

Figure 3: A figure showing the initial version of the Gantt Chart of this project (Byrne, 2022) 16

Figure 4: A figure showing the Scrumban board used in this project (Byrne, 2023) 18

Figure 5: The resulting shot list from Version 1 .. 30

Figure 6: The hardcoded shot lists ... 30

Figure 7: A figure showing an overview of Version 1 of the project. 31

Figure 8: A figure to show the contents of the films.txt file .. 32

Figure 9: A figure showing improved code to create film objects. .. 33

Figure 10: A figure to show the new class ShotStatistics .. 34

Figure 11: A figure to show how ShotStatistics is called .. 34

Figure 12: A figure showing a more detailed breakdown for the outputted shot list 35

Figure 13: A figure showing the code for image output .. 36

Figure 14: A figure showing how images have been displayed in Version 3 of the project 37

Figure 15: A figure showing the general architecture of an MVC application (Bucanek, 2009,

354) .. 38

Figure 16: A figure showing the Model of the MVC ... 39

Figure 17: A figure showing the View part of MVC ... 40

Figure 18: A figure showing part of the Controller implementation ... 41

Figure 19: A figure showing the SerializeFilm function .. 42

Figure 20: A figure showing json files implemented in Unity ... 43

Figure 21: A figure showing the first version of the Unity program ... 44

vi

Figure 22: A figure showing the updated View class .. 45

Figure 23: A figure showing the new Genre Generator functionality in Unity 46

Figure 24: A figure showing the final working version of the project prior to testing 47

Figure 25: A figure showing the black box test for generating a “Western” 51

Figure 26: A figure to show the result of using “Horror” as an input .. 51

Figure 27: A figure to show the result of using “Action” as an input .. 52

Figure 28: A figure showing how the camera has now moved from the default medium full shot

to a close up .. 53

Figure 29: A figure to show the Trello board for the final implementation 56

Figure 30: A figure to show improved error messages for invalid genres 58

Figure 31: A figure to show how tie breaks are now solved .. 58

Figure 32: A figure to show the nested for loop that exists in this project 64

Figure 33: A figure showing the time complexity of a CNN (He et al., 2015, 2) 65

vii

List of Tables

Table 1: Justification on why each objective is SMART ... 9

Table 2: The Risk Analysis Table .. 19

Table 3: A table outlining the ten films analysed for the system ... 28

Table 4: A table of the black box tests for this project... 48

Table 5: A table to show the ten films added to the project database .. 55

Table 6: A table to show black box testing for features in the final implementation 56

1

Chapter 1

Introduction

1.1 Background and Rationale

Parts of this introduction have been taken from a prior assignment (Byrne, 2022).

In the world of film production, there exists a developmental pipeline for film

creation. Generally, this can be thought of as existing in three specific stages: pre-

production, production and post-production. According to Case “Digital imaging

technology has emerged in the film industry in three separate fields: film

production (image capture), post production and cinema distribution” (Case, 2013,

18). However, there is a lack of commercial software that currently exists in the

pre-production phase, where techniques such as previsualisation occur.

Previsualisation (or previs) can be defined in many ways. One example could be

a shot sheet that “provides a list of shot descriptions for each camera” (Shyles,

2007, 454) or it could be a storyboarding process that a director could use to plan

aspects of the film such as plot, setting and, in the case of this project,

cinematography. Shyles states that a storyboard “shows the main shots of a story”

(Shyles, 2007, 425).

This project aims to develop a software to aid directors in picking a set of

cinematic shots in the pre-production phase by evaluating the most common shots

in pre-existing films, with these common shots then being recommended to the

user. The average cost of producing a film “has reached $50.4 million in 1995”

(Ravid, 1999, 464) and the cost of production can only be expected to have risen

from this point. Even indie films such as Everything Everywhere All At Once

(Kwan, Scheinert, 2022) can have high production costs, with the film requiring

2

$25 million to make (The Numbers, 2022). Reasons for high costs include “talent

and crew salaries; rental of equipment and studio space; fees for location shoots”

(Shyles, 2007, 438) to name but a few. Part of this cost can come as a result of the

need to reshoot various scenes, with one factor causing reshooting being the

incorrect type of shot being selected initially. The more a director needs to reshoot,

the more costs for renting equipment etc increase. The aim of this project is that

by outlining a sequence of shots in an ordered visual storyboard, the number of

reshoots a director may need to undertake can be reduced as a better visual plan

of how a film will look in production, rather than in post-production will be

obtained. As more time is spent planning shots in previs this should lead to

reduced spending in the production stage as the need for reshooting scenes should

be reduced.

Another factor informing the creation of this project is that the software used for

previsualisation will also be a help to guide laypeople previously unfamiliar with

film practice to gain a visual representation of different shot types that they can

then use in the planning of their own films and cinematics. Films consist of

different kinds of shots, such as “framing shots and function shots” (Brown, 2016,

60). Framing dictates how much of a subject filmed is included in the shot while

function develops the context of the scenes. Framing shots can be defined using

terms such as full shot, where a person’s whole body is in frame, while function

can be defined using terms such as an establishing shot, which establishes the

location of a scene. An overview of framing shots is shown in Figure 1 while a

type of function shot, the establishing, is shown in Figure 2.

3

Figure 1: A figure to show different framing shots (Studiobinder, undated)

Note that a cowboy shot and medium full shot are considered the same

(Studiobinder, 2020).

Figure 2: A figure showing an establishing shot used in the film Zulu (Endfield,

1964)

4

Whilst types of shots may be well understood by existing filmmakers, those that

are not as familiar with this terminology may not be able to accurately plan their

storyboarding during previsualisation, due to being less familiar with the wide

array of cinematic shots that can be employed. Having a software with a visual

guide to use during the pre-production stage will help laypeople to properly

structure a film scene with the appropriate shots needed for production which will

therefore lead to them producing better quality films.

1.2 Dissertation Structure

This dissertation will contain six further chapters. Chapter 2 is a review of

literature and how this influenced both the project and the aims and objectives.

Chapter 3 details the requirements this project needed to fulfil. Chapter 4 explains

how the project was planned, including the software methodologies used, the

design of the project, the toolsets used and how the project was tested. Chapter 5

details how the project was implemented over time. Chapter 6 details the results

of testing via black box and user tests. Chapter 7 summarises and reflects on the

project as a whole.

5

Chapter 2

Literature Review and Aims and

Objectives

2.1 Literature Review

This chapter builds from the prior literature review at the interim stage (Byrne,

2023).

As mentioned by Brown earlier, films consist of a series of different shots, which

can be categorised as either framing or function shots. Whilst the different types

of shots that exist may be understood, there needs to be a way to quantify what

shots are present in a film and the sequence in which they appear. Ronford et al.

(2015) developed a language called PROSE, designed as “a formal language for

describing shots visually” (1) which was used to divide a scene into its constituent

shots and to then link them to their respective timeframes (6). The specific aim of

PROSE was to make cinematic shots easily understandable for the user, breaking

down each scene into its relative shots as described by Brown. However, there are

some issues identified with the use of this language. Whilst it gives a detailed

summary of specific shots in a film, the paper itself only linked four examples of

films that were broken down using PROSE. Also, PROSE can only be used to

break down the shots of existing films and not to create shot sequences for new

films. Wu et al. (2018) developed this concept further by creating a new language

called FEP (Film Editing Patterns). FEP analysed styles from annotated films and

developed this further by incorporating this language into a tool for “shooting and

editing 3D animated sequences” (2), done by “selecting a framing (i.e. a full shot)

from a framing database…on the basis of the 3D position of actors at the cut point”

(13). Again, this study used an existing edited sequence rather than a

6

recommendation for a completely original film. However, FEP does demonstrate

the same functionality proposed by this project: a recommendation system of shots

for film creation. The way Wu et al. tested their system was via the use of a 3D

software. Their aim was to return only the shot list, with no visual indication of

how the shots would look. It may be more advisable to demonstrate this sequence

in a software to give users a more informed choice as to whether the output is a

reasonable vision for this specific genre.

While there may not be a specific commercial software for previsualisation, there

have been attempts to create or use existing software to model a film in its pre-

production stage. Nitsche (2008) had discussed the use of game engines such as

Unity or Unreal as potential vehicles for previsualisation in film. What was

discovered was that the use of real time rendering “allows for changes in the action

and visualization during runtime and at any stage in the process” (10), meaning

that during the pre-production phase any core storyboarding changes could be

made in real-time, thus it would be easier to see how these changes would affect

the overall product. This was partially done in their project ShotBox, which would

allow the director “with two button presses activate a specific camera such as a

close up of the face, or an over-the-shoulder shot” (9). Whilst this system relies on

the user knowing the existing shot type they wish to implement, this can be utilised

as a way to test what a shot sequence will look like by using the real-time

capabilities of a game engine linked with the shot sequence the user has been

given. Just as ShotBox uses the camera of the specific engine to demonstrate what

the shots will look like, this project will similarly aim to use the camera as a device

to replicate the shots that are provided to the user.

This methodology is further supported by Goussencourt et al. (2015) who argue

that the game engine Unity has a “built in interface that allows an operator to edit

7

in real time” (3) but also noted that the system can be given custom control

“relative to your scripts into the editor interface” (7). While this study uses

information fed into Unity via camera recorded footage rather than film stills, it

would seem that the software could be modified to give the user more control

pending on the degree of functionality needed. In this project enough control in

the system needs to be given to the user to enable them to easily move the camera

in order to replicate the shots displayed to them, rather than having this

information fed directly into the camera as it was in Nitsche’s study.

Wu et al. had also earlier implemented a different language called Patterns (2015).

The aim of this language was to “represent the semantics of framing and frame

sequencing over a number of shots” (3) which again links back to what Brown

describes. Using Patterns the system generates a shot sequence from a user’s

specification, for instance utilising other types of shots such as a point of view

shot. From there Patterns would search through a database and return anything that

matched the specific framing properties outlined. This is similar to what is

proposed in this project as there will also be a requirement for the system to return

a sequence of shots. However, the system will ask the user to specify other aspects

of film such as genre, rather than relate solely to specific framings as in Wu’s

study.

Shots are applied to a film to give emphasis to certain events. A close up, as

Heiderich describes, means “character’s actions are more intimate and impacting”

(2012, 8). Insert shots can be used to feed information to a viewer i.e. that a

particular establishment is “run down and creepy” (Brown, 2016, 67). As a result,

shots are chosen in terms of narrative importance. Wu mentions that the FEP

language was used in conjunction with a tool for the creation of 3D film sequences.

Specifically, it was used with human participants who were told the overall

8

outcome “should be coherent and aesthetically pleasing, in their own judgement”

(18). The artefact should therefore also be able to produce a shot sequence that

adheres to these principles, i.e. that a shot should be used for narrative effect. This

could be achieved by using the same narrative context for each scene for both

analysis and replication purposes, meaning that the shot sequences used as input

data and the shot sequence subsequently generated from this will be consistent

with one another. This would, however, limit the scope of the project itself, as the

project would only be able to create a certain subset of shot sequences rather than

a set of shot sequences that match with different scenarios in a film, such as a

break-up or shoot out scene.

One thing to note from Wu’s testing with FEP is how “amateur video editors were

able to make use of FEP to create sequences that had similar shots to

professionals” (20). The benefit of Wu’s study, therefore, is that a

recommendation system is created. Robillard et al. describes these as systems to

“help people … make decisions where they lack experience” (2009, 1) and, while

this paper relates to software engineering, the principle remains the same, helping

amateur film makers who lack experience in film techniques. Recommendation

systems are normally achieved using rating systems that put “items most valuable

to the user” to the forefront (6). The aim of this artefact is to produce a

recommendation system that delivers a list of the most valuable and beneficial

items to the user, these being the shots that are most used. The aim of this list will

be to inform users how to best structure their films based on pre-existing examples.

In order to generate the shot list, there needs to be input data of some kind that will

be handled by the algorithm. One avenue that could be explored would be a

machine learning implementation. Vacchetti et al. proposed a way to identify shot

types, such as the medium shot, by training three separate VCGs “a convolutional

9

neural network developed by Visual Geometry Group based in Oxford University”

(2022, 7) on a dataset of film shots and afterwards combine the predictions with

an MLP (multilayer perceptron) classifier (2022, 7). However, they admit that the

results found after testing had accuracies of “78%” (2022, 16) which, while good

“should be higher in the eyes of the user” (2022, 16). If the accuracy has around a

20% degree of error, then this is an issue. There is a potential that the user will be

fed incorrect information by the model predicting the wrong type of shot, which

may not be obvious to a layperson. Therefore, it may be that in order to ensure

maximum accuracy in this system, a trained human with good knowledge of film

shots is used instead to create the input data for the system, rather than a machine

learning model to classify shots as the input data.

2.2 Aims & Objectives

The finalised aim for this project was established in the interim stage “Is it possible

to create an algorithm that can accurately predict a set of shots a director should

employ before creating a film?” (Byrne, 2023) and the finalised objectives are

outlined with SMART justification in Table 1:

Table 1: Justification on why each objective is SMART

Objective Specific Measurable Achievable Relevant Timebound

Learn the

types of

shots that

exist in

films

At the end of

this objective

the human

researcher

should

identify film

shot types

Learning the

types of

shots will

come from

reviewing

film related

material

similar to

Brown

(2016)

Materials to

learn shots

exist in sources

such as Brown

(2016) or

online videos

such as

Studiobinder

(2020)

In order to

create an

algorithm for

film shots the

types of shots

must be

specified to

enable the

algorithm to

process them

This objective

must be

achieved by

December

22nd

10

Analyse

the shot

types of 10

films to

compile as

data for

the

algorithm

At the end of

this objective

the algorithm

should have

film data

from analysed

films

Once 10

films are

analysed

this

objective is

evidently

achieved

Analysing

films should be

easily done

from

knowledge

gleamed from

the prior

objective

In order for

the algorithm

to predict a

shot list it

needs a form

of input data

on which to

base its

judgement

This objective

must be

achieved by

December 29th

Implement

a system

to take

user input

and output

This

algorithm

needs an

input and

output system

incorporate in

some way

If users can

give input

and receive

a relevant

output, this

objective is

achieved

Since both the

type of input

and output is

known as well

as the

language, all

that is needed

is to research

how this can be

created looking

at existing

documentation.

Since this

software for

film is created

for novices

and

professionals

alike and film

is an

expressive

medium,

users should

be allowed

“to select the

topic, content

or issue”

(Hobbs, 2019,

7) to facilitate

creative

freedom. In

this case the

user input is

genre and the

output is a

shot list

relating to

that genre.

This objective

must be

achieved by

January 13th

11

Display

relevant

images to

illustrate

what shots

will look

like to user

The output is

required to

have a visual

component

attached to it

For shots

that are

outputted, a

relevant

image must

be attached

to it, similar

to Figure 2

Research will

also be needed

on how to

display images

to users, which

can be gathered

from online

resources

Images

should also be

included to

further a

user’s

understanding

of how shots

will look

This objective

must be

achieved by

February 20th

Decide on

a relevant

UI for user

interaction

There are

different UI’s

that could be

extended as a

base for this

project, such

as Unity

(Unity

Technologies,

2023) or

Unreal (Epic

Games, 2022)

so a definitive

choice is

required

Once a UI is

decided

upon and

extended

this

objective is

fulfilled

Information on

both engines

can be

researched

online

As users are

testing this

project, UXD

principles

must be

adhered to

and therefore

a relevant UI

is needed

This objective

must be

achieved by

March 7th

Test

artefact on

users to

measure

how

effective it

is in

achieving

the aim

This objective

means that

user testing is

required to

test the aim

This

objective is

fulfilled

when

enough

users are

found and

their data

analysed to

see if the

results

Test

participants

can be sourced

internally at the

University of

Lincoln

Since the

research aim

poses that a

hypothetical

director

would use this

algorithm it

must

therefore be

tested on

This objective

should be

completed by

April 16th

12

satisfy the

aim

human

participants

13

Chapter 3

Requirements Analysis

Based on the aims and objectives, together with the research gathered for this

project, a list of requirements was created. One common link in many of the papers

researched was that they were creating a software that utilised aspects of a UI and

thus needed to facilitate a good user experience. To achieve this the artefact

created would also need to provide a good user interface which would follow the

principles set out by Nielson (1994). Nielson explains that systems need “words,

phrases, and concepts familiar to the user, rather than internal jargon”. This

software is designed with the aim that any layperson can understand its

functionality. Therefore, when outputting the shot list the first requirement must

be:

• Create an output that is easily understandable to any user

As mentioned in the literature review, certain artefacts such as FEPs were created

as recommendation systems for testers to use with no requirement for a user to

adhere to what the system had generated. It could be used instead to give advice

to users who were less experienced or to users open to new ideas. By creating

software that allows for more creative freedom Resnick et al. explains “Enhanced

interfaces could enable more effective searching of intellectual resources,

improved collaboration among teams, and more rapid discovery processes” (1)

with the latter two being important for an industry with multiple workers and

potentially having tighter schedules. Therefore, another requirement for this

software should be:

• Allow users to experiment with the generated output

14

Finally, the aims and objectives mention that the user needs a relevant UI both to

work with as well as to use to input data, in this case genres, into the system to

generate an output. In prior studies, the game engine Unity was used, utilising its

camera system to frame shots. Since this project is also working with

cinematography, it may be an idea to use the existing Unity interface which has

already proven successful (it was reported that “2.8B monthly active end-users

who are engaging with content created or operated by Unity solutions in 2020.”

(Unity, 2021) and has ways to extend its UI functionality via its UnityEditor API

(Unity, undated). The final requirement therefore would be:

• Use Unity’s UI to allow user input

On the non-functional end of this project, there needs to be a way to store

information about pre existing films and the shot types that they use. To keep the

input data consistent, a control variable needs to be introduced, that being in this

project, shot lists having the context of a shoot out sequence. This is the data that

is needed to help the algorithm make an informed choice about the shot list it needs

to output for the user when a specific genre is input (as an independent variable).

On the surface, this sounded like a database problem. A database system is defined

by Silberschatz et al. as “a way to store and retrieve database information that is

both convenient and efficient.” (2011, 1) and in practice are designed “to manage

large systems of information” (2011, 1). For this project, although a large volume

of data will not be used, the data that is used is “a collection of interrelated data”

(2011, 1) as the data will all contain information related to film shots. Breitinger

et al. notes that the efficiency of database lookup is “O(x) (or O(N)) where x is the

number of digests in a database” (2014). As the number of items that are planned

to be used is relatively small, the overall performance of this project should not be

adversely affected. Thus another requirement must be to:

• Design a database like system to create the outputted shot list

15

Chapter 4

Design & Methodology

4.1 Project Plan

Over the course of this project, the aims and objectives were continually adapting

and changing as the needs and requirements of users were further understood. The

initial proposal of this project was the following (Byrne, 2022):

4.1.1 Initial Aim

• To develop an effective user experience utilizing a tool that enables

laypeople to create cinematic content for games

4.1.2 Initial Objectives

• Evaluate by 21st November two pre-existing software that exist for games

and outline what features to incorporate in this software

• Evaluate by 29th November two pre-existing software that exist outside of

games and outline what features to incorporate in this software

• Define a minimal set of features required for cinematic content from those

surveyed by 7th December.

• Design a user interface via paper prototyping that enables a layperson to

create cinematic content by 15th December.

• Collect pre-existing assets online that can be used for sets, music and

characters to replicate a genre of film, such as a Western by 30th December.

• Create a minimal viable software that can be used by participants to replicate

cinematography for cinematics by 1st March.

• Evaluate if each task is completed in the timeframe outlined for each sprint

and create strategies if unsuccessful by 9th March.

16

• Decide on a similar software that participants can use to make a comparison

to when using this software by 17th March.

• Evaluate the design by getting users to attempt to make an example from an

existing movie scene using the toolset by 8th April.

Equally a Gantt Chart and table were also created to help manage these objectives,

outlined in Figure 3.

Figure 3: A figure showing the initial version of the Gantt Chart of this project

(Byrne, 2022)

4.1.3 The Changing Project Plan

As can be seen in Figure 3, the initial plan for this project was to use the agile

methodology SCRUM. The reason for using this methodology was because “agile

is best suited for quick and effective development of software” (Srivastava et al,

2017, 1) and in general “is currently the top most technique used in development

not only for software but even in the fields of finance” (Srivastava et al, 2017, 1)

suggesting that as a technique it has proven to be reliable in software development.

In fact, when comparing with a software methodology such as waterfall, it was a

more beneficial methodology. An agile methodology such as SCRUM “has a high

probability of success” (Mahalakshmi et al, 2013, 4) compared to waterfall whilst

also being able to “expect changes and accept the changes” (Mahalakshmi et al,

2013, 4) which waterfall is not able to accommodate. As it was likely that changes

17

would be needed during the development of the artefact, SCRUM seemed a more

suitable choice compared to the more limited waterfall method.

Over time, the primary aim of the project and its objectives changed, with the aim

now being:

• “Is it possible to create an algorithm that can accurately predict a set of shots

a director should employ before creating a film?”

This being the same aim as the finalised aims and objectives. When analysing the

games and non-games software it became apparent that they had already fulfilled

the criteria set out in the original objectives, that they were simple for the

layperson to use to create cinematic content. It was then that it was decided to

update the aims and objectives, together with the software methodology. The

revised set of objectives are outlined below, with a Scrumban board detailing the

progress from the interim report:

• Learn the type of shots that exist in films by 28th December 2022

• Analyse 10 films from which to compile shot lists for data by 5th January

2023

• Complete first iteration by 13th January 2023

• Demonstrate first iteration of project by 3rd February 2023

• Test product by 11th April 2023

18

Figure 4: A figure showing the Scrumban board used in this project (Byrne, 2023)

Some objectives shown in Figure 4 were undated as at the interim stage it was not

yet clear exactly what features would be required for this project, i.e. a paper

prototype and a UI. As all the features were not known it was not possible to

predict when a minimal viable software could be completed. However, it was clear

that an agile methodology was still required for this project due to the potential for

the objectives to continually change. A shift from SCRUM to Scrumban was

decided upon using a website called Trello (Atlassian, 2020) to visualise the

Scrumban board. Scrumban is a mixture of SCRUM and Kanban. Kanban works

by using a Kanban board which “is divided into columns that represent part of the

development process” (Petricioli et al, 2022, 2) and is another branch of agile. It

is noted that combining Scrum and Kanban “can lead to quicker development, an

improved workflow, an improved defect fix rate” (Petricioli et al, 2022, 3) which

makes it a more suitable process for this project. It also “keeps iterations, but are

usually shorter than sprints” (Petricioli et al, 2022 4). By having shorter

development cycles, potential issues can be identified much quicker, meaning any

improvements to the software can occur sooner. Therefore, the plan for the

Scrumban board was to work on specific tasks taken from the backlog for each

sprint and also planning ahead by allocating tasks to be included in the next sprint.

There is also a section for testing the current sprint of the project. Any tasks fully

completed are placed on the right hand side of the board. This quicker

methodology was much more suited to the needs of this project and was therefore

19

adopted, the backlog being adapted as further improvements in each iteration were

identified. Further iterations to the Trello board are shown in Appendix A.

4.2 Risk Analysis

A table showing the risk analysis for the project is displayed in Table 2.

Table 2: The Risk Analysis Table

Risk Explanation Impact Likelihood Mitigation

Incorrect

identification

of film shots

As mentioned in

the requirement

analysis, a

database like

system is

implemented for

this project,

however the data

used by the system

is from human

analysis, which is

prone to human

error

High High More than

one human

should

analyse the

same film

scenes and

each film

scene

should be

checked

more than

once to

ensure no

shot was

identified

incorrectly

Insufficient

number of

films analysed

Since the shot list

outputs the most

common shot from

each part of the

sequence, a small

volume of films

will lead to a more

arbitrary choice as

there is less chance

High Medium Check each

film

analysed to

establish if

there is a

common

shot at each

point. If not,

more data

20

of a common shot

being identified

should be

given to the

algorithm to

provide a

more

informed

choice

Varying shot

list lengths

Should the film

clips analysed be

of differing

lengths to one

another, this could

lead to the

algorithm having a

shot list where the

final section is

being generated

from only one film

Medium High Find the

point in

which the

shortest

shot list

ends and for

every film,

only loop

through the

number of

shots equal

to the

shortest list

Not enough

participants

Since this project

is testing if the

software is a good

recommendation

system, enough

users will be

needed to check

how effective the

software is for this

purpose

Low Medium Start testing

early, as

soon as the

project is

complete

and

advertise

testing well

21

4.3 Design

4.3.1 Front End

Over time, it was decided that a suitable UI was required, further explained in the

implementation section. As agile practices were being employed, user experience

design could be easily and effectively incorporated into the Scrumban, with Najafi

et al. noting in a case study how when user experience was incorporated into each

sprint “The results of user research and testing were instrumental in prioritizing

the product backlog” (2008, 2). This would mean that it would be most beneficial

for the project to perform a final iteration after user testing to address any new

items for the product backlog, stemming from user feedback. In the initial aims

and objectives, the potential of designing a brand new interface was considered.

This was also considered in the second iteration at the interim stage. However, as

the back-end of the project had already been designed, the development of a

completely new UI was considered inadvisable. Ferreira et al. notes how, in agile

projects involving UI, “The projects we studied accepted a considerable amount

of UI design up front, but then maintained a connection between the UI design

process and development iterations” (2007, 9). As can be seen from the interim,

the functionality of the project had already been implemented before the UI design

was even proposed, making it more difficult to design UI functionality in

conjunction with the back-end development. Instead, it was decided to extend an

existing UI from prior game engines studied, such as Unity or Unreal, as they are

likely to have pre-existing UI standards in place which could be incorporated into

the project. Unity was chosen, firstly due to it having an established user base and

secondly there being more transparent documentation available on how to adapt

its editor framework.

22

4.3.2 Back End

As mentioned in the requirement analysis, a database like structure was used in

the back end of development, which executes the following tasks in order: Take

user input from the front end of the project, loop through database to find films

that match the genre, loop through these matching films to find the most common

shot at each point in the sequence, create a new shot list that has the most common

shot from each sequence, output this list to a json file to be loaded by the front

end. The dataset will be of film scenes containing shoot out scenes and will be

selected and analysed by a human researcher.

As the front end is not only using Unity’s editor interface but extending it to accept

user input and generate a visual output, the back end of Unity’s editor API (Unity,

undated) is also required, both to load the new shot list from the json file and to

load the required images that the user will look through after each generation.

In the next chapter, further detail is given as to how the back end changed as the

need for a front end was identified with more refined programming practices being

employed as the project developed.

4.4 Toolsets and Machine Environments

The tools used in this project were the following: Unity and Visual Studio 2022

using C#. The version control software was GitHub (specifically using GitHub

desktop). The reasons for using Unity have already been outlined, however the

justifications for utilising the other tools are outlined in subsections 4.4.1 and

4.4.2.

23

4.4.1 Version Control

The version control used was Github, a tool commonly used by software

developers (as of 2023 Github has stated it has 100 million users) (TechCrunch,

2023). This means that, like Unity, it is proven to be a trustworthy software. In

fact, Github’s own website states that brands such as Pinterest and Mercedes-Benz

trust this application, further reinforcing its credibility (Github, undated). Github

works by creating a repository that exists on an individual’s account, which can

be accessed anytime via command line using Git Bash, or via the application

Github Desktop. Any changes to the codebase can be published to the repository

and stored online. The desktop application was chosen over the command line for

the sake of convenience. In general, especially with novice programmers, “the

features in standard command line environments are not as assistive to

programmers as visual environments” (Dillon et al., 2012, 1) due to command line

being less descriptive. Therefore, to avoid any potential confusion Github Desktop

was favoured. Another positive feature of Github is the ability to view prior

commit histories, allowing for potential errors to be retrospectively fixed by

loading a prior commit of the project if needed.

It should be noted that, while Github is a well-established software for version

control, there are other tools available for this purpose. Microsoft has infinite cloud

storage available on its OneDrive tool, meaning that multiple versions of this

project could be uploaded to OneDrive with no need to worry about a lack of

storage. This, however, is not a use of version control, rather it is a means to store

multiple versions of a project which is not as fluid as the real time updating that

Github achieves. Also, should any errors occur in the project, it is harder to

pinpoint where in the development pipeline the error first appears. As Github has

greater transparency by allowing the developer to look through the relevant files

in the repository for each commit, Github Desktop is a far more reliable solution

24

than simple cloud storage and, due to its popularity, there was no real reason to

look for other version control software.

4.4.2 Visual Studio C#

For the purpose of back end development, a database like structure was used to

store film data. There are many program languages available to do this, one of

them being SQL. SQL stands for Structured Query Language and is commonly

used for scalable database systems that have tables “with one or more named

columns, each having a data type” (Melton, 1996, 1) and “rows having columns

corresponding to the table’s columns”. (Melton, 1996, 1). As it is a query based

language, data in the database can be easily searched for using the keyword

SELECT and specifying a requirement, such as selecting all rows with the first

name John. It can also be embedded using other languages, with applications such

as C, COBOL and Java (Melton, 1996, 2) (Van Den Brink et al. 2007, 8).

However, as mentioned, SQL works firstly with multiple tables that normally

handle a multitude of data. An example of a practical use of databases is described

by Connolly et al. “The personal details that you supply, such as name, address,

age and whether you drink or smoke, are used by the database system to determine

the cost of insurance” (2015, 54). There is not much data this project is required

to search through, when analysing films all that is required is the genre the film

falls under and a list of shots related to the film. This only requires the use of two

columns. The use of multiple tables and multiple columns is therefore superfluous

to the requirements of this project and the use of SQL would likely not be utilised

effectively.

Instead, C# was used as the shot lists could be stored as an array/list and the inbuilt

API LINQ could instead be used to look through the lists themselves. LINQ uses

the language of SQL such as SELECT but performs the operations instead on C#

structures like an array or list, which is the exact task required for the back end.

25

This also fulfils the database like requirement for the back-end as each list would

act as its own separate row, with LINQ acting as the query portion of SQL to get

the required information in each row. As stated earlier, Unity was decided as the

front end portion of the program later on in development. As Unity also happens

to use C# for game development, this influenced the decision to use Unity as well.

4.5 Testing

Fundamentally, two things are being tested in this project. Firstly, the aim “Is it

possible to create an algorithm that can accurately predict a set of shots a director

should employ before creating a film?” This will be done via user testing. The plan

for each user is the following:

• Check each user’s prior knowledge of film shots, if they need a brief

refresher, show a quick video that explains each type of shot

• Ask each user to compile a shot list of either an Action, Comedy, Thriller or

Western shoot out scene

• Ask each user to compile the outputted shot list from the algorithm

• Ask the user via a questionnaire whether or not they agree with the output

generated

As the plan for this software is to be a recommendation system to suggest better

shots to users than the ones they had originally thought of, it is important to

establish how effective the algorithm is at predicting new shot lists for films. If the

results indicate that the system is either not recommending shots the user finds

useful or not producing a shot list the user finds of equal or better quality than their

own, then it is clear that the project needs further refining in order to better fulfil

the aim.

26

A secondary consideration is that, both as a system that is incorporating Unity’s

UI and as a recommendation system, the project must also conform to user

experience design principles. Again, the most effective way of checking this is via

a questionnaire, specifically using likert scales that measure between 1-5, 1 being

poor and 5 being exemplary. There may also be further information to be obtained

about the system by asking open ended questions, which rely more on a user’s

personal opinions. The main reason for requesting this type of feedback is that

they are “avoiding the bias that may result from suggesting responses to

individuals” (Reja et al., 2003, 3). This form of feedback is much less restrictive

and may potentially reveal details relating to the system that had not been

identified by the questionnaire. Closed end questions that require likert scale

responses are still used as there is a potential with purely open ended

questionnaires of “larger item non-response” (Reja et al., 2003, 3) which would

be hugely detrimental to this project as it requires user feedback. It is generally

advised to use a mix of both closed and open ended questions. For instance, “open-

ended questions can be used to explore deviant responses to the close-ended

questions” (Reja et al., 2003, 4). Taking all this into consideration, the

questionnaire used will start with close ended questions finishing with one open

ended question allowing users to explain why they picked the options for their

likert scales. While this final question may not have as many responses, the

responses given could identify issues that should be taken into account when

deciding how the project could be further improved going forward.

Appendix B shows the final questionnaire used in testing. Participants will be

recruited by asking potential testers if they are interested in the project and its

aims. Ethical procedures will be followed by having completely anonymous

questionnaires that are only held by the researchers as well as ensuring that consent

is obtained from the user and that they have read the participant information sheet.

Once all participants have been sourced and all questionnaires analysed, data will

be structured by identifying the modal number in each likert scale, indicating what

27

each user found the most/least adequate for each faculty of user experience. Any

noteworthy open ended responses will also be recorded.

28

Chapter 5

Implementation

As Pries explains, SCRUM is an iterative process (1) which means that for every

iteration it is possible for “the customer to add changes to the product” (Pries,

2010, 1) with the customer prior to user testing being the developer. This is the

case for any agile method, including Scrumban, as they are all iterative processes.

The following section outlines each version of the software and the reasons why a

new iteration was needed.

5.1 Version 1

Prior to implementation, there was a stated objective to analyse ten separate films

and compile shot lists that could be used as input data for the algorithm. Each film

analysed had the common theme of a shoot out scene. Table 3 shows each film

chosen, the genre of each film and the number of shots used.

Table 3: A table outlining the ten films analysed for the system

Film Genre No of Shots Citation

The Good, The Bad

and The Ugly

Western 46 (Leone, 1966)

Zulu Action 34 (Endfield, 1964)

Memento Thriller 17 (Nolan, 2000)

John Wick Action 36 (Stahelski, 2014)

Grosse Point Blank Comedy 46 (Armitage, 1997)

29

The Grand

Budapest Hotel

Comedy 18 (Anderson, 2014)

Marathon Man Thriller 34 (Schlesinger, 1976)

The Man Who Shot

Liberty Valance

Western 20 (Ford, 1962)

Reservoir Dogs Action 24 (Tarantino, 1992)

Django Unchained Western 21 (Tarantino, 2012)

In the first version of this project, a simple console application was produced

which did the following. In the main function, arrays of films were created that

hardcoded the shot lists for each film. Each film was then appended to a further

list that would be used to loop through each film that matched the user specified

genre. Another for loop would be used to iterate through the films of the specified

genre, find the most common shot at each index, before then outputting each

common shot to the console. These would therefore be considered the shots that

should be used when a user creates their own film, as the more frequently a shot

is found at this position, then the more favoured it is to be used by established

filmmakers.

30

Figure 5: The resulting shot list from Version 1

Figure 6: The hardcoded shot lists

31

Figure 7: A figure showing an overview of Version 1 of the project.

As can be seen in Figure 7, there is a main function and a class called Film which

will be used to create both film objects with their relevant shot lists and output the

final shot list to the user. LINQ is used as it will order shots in descending order

via the use of a GroupBy method, following this tutorial (StackOverflow, 2008).

For reasons outlined in Chapter 4, LINQ has been used. It should be noted that

Table 3 shows films with differing numbers of shots. As the aim is to compare the

most common shots at each position, the shot list was decided to be only the length

of the shortest film in the genre, to prevent a scenario where any later shots

proposed would only be informed by a single film.

5.2 Version 2

Further on in development it was decided that a second version of this

implementation should be included to add more detail as to why each shot was

selected by the algorithm. This can be seen as giving system transparency,

explained by Zhao et al. as “the extent to which information of a system’s

reasoning is provided and made available to users” (2019). The reason that this

may be important for this project is that, as the system being created is a

recommendation system, it can help laypeople make a more informed choice. As

Arnold et al. discovers “the availability of a fully functional explanation facility

32

influences both novices’ and experts’ judgements” (2006, 94). Showing how the

algorithm arrived at each choice may help users understand why each shot selected

was recommended to be the best shot to use for each section of the sequence. It

could also provide users with alternate shots that they may wish to explore instead,

allowing for the benefits of creative freedom as outlined by Resnick.

This second version also cleaned up aspects of the first version, i.e. the hardcoded

arrays in the main file were replaced with a txt file that contained each array of

shots, together with the specific genre related to these shots. The rationale for

doing this is that it was easier to add to the txt file than to hardcode each value into

the program. It also helps to reduce the amount of code needed for each film, as

all films can be handled and added to the system by one line as opposed to every

film needing three lines of code to be instantiated and added to the program.

Figure 8: A figure to show the contents of the films.txt file

33

Figure 9: A figure showing improved code to create film objects.

To create a film object, Figure 9 shows that each line of the txt file will be split

into a string and an array of strings, with the split happening when the line

encounters a colon. These will be variables for each film object. While this does

mean that each line of the txt file needs to follow a specific format, the overall

process is much more efficient than in the prior version. All other aspects of

Version 1 remained the same, however, a new class called ShotStatistics was made

in order to incorporate system transparency, created following this forum post

(StackOverflow, 2009).

34

Figure 10: A figure to show the new class ShotStatistics

In order to call this class, an extra amendment were made to the function

outputShots.

Figure 11: A figure to show how ShotStatistics is called

After making these amendments, the console output was updated to include more

information as to why each shot had been recommended to the user.

35

Figure 12: A figure showing a more detailed breakdown for the outputted shot

list

As can be seen in Figure 12, the user now has a more functional explanation as to

why the algorithm has specifically picked each shot for the final shot sequence. It

can be seen that for sequence 6 in a western, a full shot appeared twice, whilst an

extreme close up appeared only once. Therefore, the algorithm had chosen a full

shot to be implemented for the output. In the event of a tie, such as in sequence 1,

the algorithm chooses the first element. Whilst the requirement to design a

database like system was successfully achieved, this second version still had

usability concerns. As Nielson explains, the user needs concepts familiar to them,

36

rather than internal jargon. As the console output only refers to terminology related

to film with no real explanation as to what each shot relates to, it fails as a system

that can be used by laypeople as it presumes prior knowledge. This, therefore,

means that it communicates poorly and a rethink was required in order to better

describe the final sequence suggested.

5.3 Version 3

In order to rectify the underlying clarity issue highlighted in the two prior versions

it was decided that a visual component to the output was required. Rather than

having a simple console interface as a UI, it was hoped this would make the shots

more understandable to the user. With visual representations users can “be more

concerned with the perception and the meanings attributed to them” (Prosser,

2012, 177). Therefore, a visual representation of the shot list would help users

understand the context of each shot and what it would mean in the context of their

film. It was believed this would help break down the barriers laypeople may

encounter when interpreting the information provided. To achieve this an extra

method, called imageOutput, was included.

Figure 13: A figure showing the code for image output

37

As can be seen in Figure 13, this function in the Film class does the following; in

the main function a for loop is used for each shot in the outputted shot list, which

then calls this method in Film. A reference to the genre is used as there are folders

this program will access that will contain the relevant shots which will then be

displayed onto the monitor. A path is made combining the folder name “genre”

and the shot i.e. wide. An inbuilt function called Process (Microsoft, undated) is

then used, which tells the program to load the image path i.e. Western/Wide.png.

Once the process starts, it runs for a second before closing and then the next image

is loaded in exactly the same way. An example of how the images are displayed is

shown in Figure 14.

Figure 14: A figure showing how images have been displayed in Version 3 of the

project

38

As can be seen in Figure 14, all images load as separate png images in a sequence

that matches the output sequence generated from the algorithm. Shot statistic

information and the final outputted shot list can still be viewed on the console

window. This now means that the user is better informed as to what each shot

means as they have a clear visual representation in line with Prosser’s thinking. It

also fulfils the requirement to have an output understandable by any user.

5.4 Version 4

It was noted during development of this application that there is a well defined

way to implement this program, called MVC (Model View Controller), an

important principle in object orientated programming. As Bucanek notes it

“describes the architecture of a system of objects.” (2009, 353). As C# is designed

for object orientated applications a better architecture needed to be employed for

the use of this software. An outline of how MVC’s normally look is defined in

Figure 15.

Figure 15: A figure showing the general architecture of an MVC application

(Bucanek, 2009, 354)

According to Bucanek, five principles must be adhered to in an MVC application.

The Model (or Data Model) must encapsulate information. View must display

39

objects to the user. Controller must implement actions. View must gather user

input and pass it to the Controller to perform an action. Finally, the View must

observe the Model and update its display when it changes (2009, 354). When

looking at the previous versions it is clear the View, Main, violates these

principles. Film objects, when created, are handled inside the View rather than in

the Controller. There is also no Model, any film objects are also created and stored

in the main View class. It was clear, therefore, that an update to the program was

needed to stop violating this object oriented principle.

5.4.1 Model

Figure 16: A figure showing the Model of the MVC

As can be seen in Figure 16, the Model is now established. Any information that

needs to be encapsulated, such as the list of shots, the shot paths and the genre are

now stored in a separate class.

40

5.4.2 View

Figure 17: A figure showing the View part of MVC

As can be seen in Figure 17, the View is now established, handling the user input

and passing it to the filmController object for data handling. It can also be seen

that the filmController uses a static method in the Model class to generate all the

film data that the model needs to encapsulate, meaning the Controller changes the

model as outlined in Figure 15.

41

5.4.3 Controller

Figure 18: A figure showing part of the Controller implementation

As can be seen from Figure 18, any of the internal workings of the program, in

this case retrieving any films that match the specified genre, are handled purely in

the Controller class. Therefore an effective MVC application has been

successfully implemented.

One thing to note is that in View a function called SerializeFilm is called in the

Controller class. It had become clear that, while displaying images onto the

console did help users better understand how film shots are defined, it was also

very unprofessional. Multiple images would be loaded onto the monitor, meaning

the user would need to close each individual image one by one. Secondly, a general

console application was felt to be too simplistic. McKay states that people “react

emotionally to a product’s visual appearance” (2013, 9) meaning that if it is of a

“questionable quality, users will naturally assume that the rest of the product has

42

the same level of quality” (2013, 9). Again, referring back to Nielson “Users

experience with other products set their expectations” (1994). Most users will be

more familiar with UIs that have a visual component rather than a simple console

application, so in order to create a more professional application it was decided to

implement another version using a UI instead.

Figure 19: A figure showing the SerializeFilm function

5.5 Version 5

In the requirement analysis, it was decided that extending Unity’s UI to

incorporate the functionality of this project would be a logical solution. Initially

the Unity project was very simple. Rather than have the images for the final shots

displayed as separate png files, it was decided that images would be displayed in

Unity’s play view by using a canvas game object which, in turn, would have

buttons allowing the user to transition easily between different parts of the previs.

This was done by loading the json file that was created from the MVC

implemented in Version 4 into Unity. This has now become the back end of the

project, as shown in Figure 20.

43

Figure 20: A figure showing json files implemented in Unity

As can be seen in Figure 20, the json file is loaded. Once loaded, the information

is firstly stored into a separate class called Films. This was incorporated from the

Unity forums (Unity, 2014). The canvas is then manipulated to load the image at

position 0, as well as displaying text for the position in both the shot list and the

genre. This is shown in Figure 21.

44

Figure 21: A figure showing the first version of the Unity program

As mentioned by Resnick, it is important to allow users to experiment with the

shots in the recommendation system. This means that the user is free to try a

different shot than the medium close up selected by the program as illustrated in

Figure 21. To enable this, users were given control of Unity’s camera in play

mode, allowing them to fine tune their sequence to their individual needs, whilst

also having the guidance of the software itself to refer back to. This was achieved

by following two tutorials (Game Developer Training, 2022) (Unity, 2012). This

would therefore fulfil the second requirement of this software, to allow users to

experiment with the generated output. However, this version was still not ideal.

In order to change the genre, the user would need to exit Unity, load the MVC

code implemented in Version 4 for the new genre and then reload the Unity

project. This was clearly inefficient and still not professional enough to encourage

a user to utilise this software in a practical setting. Also, when users had control

of the camera, there was no real point of reference that could be used in order to

try and experiment with shots. Although the cube as seen in Figure 21 could be

considered a point of reference, it is more likely that directors would film human

participants. Therefore, it was not contextually sufficient and would be likely to

cause confusion.

45

5.6 Version 6

A final version of this project was created before being tested by users. Firstly, the

MVC model was incorporated into Unity. Rather than the View class working

only for a console application, it was adapted to use the UnityEditor API as a way

to handle user input (Unity, undated).

Figure 22: A figure showing the updated View class

As can be seen in Figure 22, the View class has a similar functionality to that seen

in Version 4. However, the input is now taken from a new item in the menu

labelled Tools/Genre Generation, which has a singular text field where a user can

enter a genre shown in Figure 23. That string input is then used by the Controller

code as demonstrated in Figure 18.

46

Figure 23: A figure showing the new Genre Generator functionality in Unity

As can be seen in Figure 23, a humanoid asset (Kevin Iglesias, 2020) is now used

in place of the cube, with the camera also being positioned to be in the exact same

framing as the shot displayed on the canvas in this case a medium shot. This was

done to provide further clarification to the user as to how a specific shot would

appear in the visual environment. However, the user can still use Unity’s camera

system to search for other types of shots that they may wish to incorporate. Whilst

the shot statistics are no longer there to give system transparency, the use of a

functional camera that allows users to experiment instead allows for the creative

expression that Resnick believes so important in a system. A final version of this

project is therefore shown in Figure 24.

47

Figure 24: A figure showing the final working version of the project prior to

testing

It is believed that all aspects of the requirement analysis have been fulfilled. The

user has an output that is clearly understandable as visual clues have been given

to help both the novice and the expert alike understand what each film shot

represents. Users are also able to experiment with the output via Unity’s camera

system, which can be utilised to encourage experimentation for different types of

shots. Unity’s UI has been extended to allow user input. A new tab in the editor

window has been created to allow for genre generation by the MVC. Finally, a

database like system has been designed as the MVC loads in the txt file with

information that is handled like a database.

48

Chapter 6

Results & Discussion

6.1 Black Box Testing

As stated in Chapter 4, the plan to test this project’s aim: “Is it possible to create

an algorithm that can accurately predict a set of shots a director should employ

before creating a film?” was to incorporate user testing, by getting them to use

the system to see whether or not they felt satisfied with the shot list that the

algorithm generated. Also, as it is a recommendation system, it must also have

functionality that allows users the freedom to experiment with the generated

output. Finally, as the project is also incorporating a UI, user experience

principles must be adhered to. These would also be tested by users. However,

before all of this could be done, black box testing was implemented to make

sure that the system’s functional requirements from the requirement analysis

were met, as shown in Table 4.

Table 4: A table of the black box tests for this project

Test Input Type Expected

Output

Actual

Output

Pass/Fail

The user

inputs the

genre

“Action”

Expected A shot list is

generated of

type

“Action”

The correct

shot list is

generated

Pass

The user

inputs the

genre

“Action” in

lower case

Borderline A shot list is

generated of

type

“Action”

Unity throws

an error

stating

“Sequence

Fail

49

contains no

elements”

The user

inputs the

number 2

Erroneous Unity will

throw an

error to the

user

Unity throws

an error

stating

“Sequence

contains no

elements”

Pass

The user

inputs the

genre

“Horror”

Erroneous Unity will

throw an

error to the

user

Unity throws

an error

stating

“Sequence

contains no

elements”

Pass

The user

inputs the

genre

“Comedy”

Expected A shot list is

generated of

type

“Comedy”

The correct

shot list is

generated

Pass

The user

inputs the

genre

“Thriller”

Expected A shot list is

generated of

type

“Thriller”

The correct

shot list is

generated

Pass

The User

inputs the

genre

“Western”

Expected A shot list is

generated of

type

“Western”

The correct

shot list is

generated

Pass

The user can

move the

camera using

the keys

WASD

Expected When

pressing

each key, the

camera will

move left,

The camera

moves in the

directions

expected

Pass

50

right, up and

down

The user can

zoom the

camera in

and out with

the scroll

wheel

Expected When

moving the

scroll wheel

up and

down, the

camera can

zoom in and

out as a

result

The camera

can zoom in

and out as

expected

Pass

The user can

toggle the

interface

on/off with F

Expected The canvas

containing

the image

and text can

be turned on

and off with

F

The canvas

toggles

on/off as

expected

Pass

As can be seen, most of the tests pass. The requirement “Use Unity’s UI to allow

user input”, informed by the objective to decide on a relevant UI for user

interaction was successfully implemented. The user can input a specific genre into

Unity and a shot list of that genre is outputted to the system. An example of this

test for the input “Western” is displayed in Figure 25.

51

Figure 25: A figure showing the black box test for generating a “Western”

As can be seen, the correct shot list for the Western has been generated. The

requirement “Create an output that is easily understandable to any user” has also

been fulfilled. This has been achieved by having two visual references of a shot,

in this case a Medium Full. One reference is the use of the shot in a pre-existing

film, whilst the other reference is Unity’s camera positioned in such a way that it

creates a Medium Full shot in Unity’s virtual environment. This, therefore, also

fulfils the objectives to both implement a system that takes user input to output a

finalised shot list as well as displaying relevant images to illustrate to the user what

these shots will look like.

Erroneous tests were also given for user inputs, with the expectation that Unity

would throw an error i.e. for genres such as “Horror”. The input data given to the

algorithm would contain no “Horror” films and so no shot list could therefore be

generated. An example of this test is shown in Figure 26.

Figure 26: A figure to show the result of using “Horror” as an input

52

As expected, when “Horror” was entered, an error was thrown by Unity, caused

by an operation used by LINQ (incorporated in Figure 7). This error was due to

the list used by LINQ containing no elements, which would make sense as there

are no “Horror” films in the txt file and so, therefore, nothing could be passed

through to the list variable “currentShots”. However, this could cause problems

when used by a layperson. Nielson states how when creating a good user

experience that there should not be any “internal jargon”. A developer can easily

understand why the input “Horror” causes Unity to throw an error, however for

those unfamiliar with the internal workings of the program, the error thrown may

not be understood and may cause confusion. It may, therefore, be more advisable

to offer an explanation to the user as to why a genre such as “Horror” cannot be

used rather than the error message that is currently displayed.

One black box test resulted in failure. This was when the user input the genre

“Action” in lower case. As the input was still relating to generating an action

sequence, the expected output would therefore be that the action sequence is

displayed. However the system instead treats this input the same way as an invalid

genre such as “Horror”, as shown in Figure 27.

Figure 27: A figure to show the result of using “Action” as an input

This means, therefore, that the system is relying on the user to input a string in a

specific format, that being that the first letter of the genre is capitalised, whilst all

other letters are in lower case. The user may not know that the system expects the

input in a specific format. Before testing with users the project should be changed

to allow for the inputted genre to be submitted in any case.

53

As previously stated, this system has been created as a recommendation system.

In order to fulfil the stated requirement “Allows users to experiment with the

generated output” users are given camera controls, such as using WASD to move

the camera and using the scroll wheel to zoom in and out. This could mean moving

the camera to create a close up, rather than the medium full recommended in

Figure 25. Figure 28 shows the result of the black box test for camera control.

Figure 28: A figure showing how the camera has now moved from the default

medium full shot to a close up

As can be seen from Figure 25, the camera defaults to a medium full shot for the

first shot of the sequence. However, in Figure 28 the shot is now a close up. This

is because the camera has been moved from the medium full position to a close up

by the user, meaning that the requirement “Allows users to experiment with the

generated output” has been fulfilled.

The final requirement relates to how the system must “Design a database like

system to create the outputted shot list”. It is evident that for the genres used as

input data; Action, Thriller, Western and Comedy, a shot list is outputted, with the

shots displayed being whichever shots are identified as the most common in this

database like system. Therefore, this final requirement is also shown to be fully

operational as are the first two objectives i.e. to both learn the type of shots that

54

exist in films and to analyse the shot types of ten films to compile as data for the

algorithm.

As well as the changes already outlined, some further usability concerns were

identified during black box testing, based on Nielson’s heuristics. Firstly, whilst

the user was able to use camera controls, the functionality for this was not

immediately obvious as there was no documentation in the system describing the

controls to the user. Also there was no explanation to the user on how to generate

shots themselves. Nielson states that while “it’s best if the system does not need

additional explanation” (1994) it may be necessary “to provide documentation to

help users understand how to complete their tasks” (1994). This could be in the

form of a separate txt file, that explains the controls available to the user and the

way they work within the system. This type of documentation has already been

used by the gun asset downloaded for this project (Nokobot, 2020), it has already

proven to be a valid way of presenting information to the user. It was also decided

that more camera functionality should be included, i.e. having the camera rotate

around the scene to allow for more creative expression. Further amendments

included adding a text box to describe shots to further increase user understanding

and allowing user adjustments to be saved as a pdf.

The final consideration before user testing was to increase the dataset to twenty

films from the original ten as the current dataset was not truly fulfilling the aim

i.e. for some genres, such as “Thriller” and “Comedy” only two films were being

considered in the dataset. This would mean that the most common shot could only

be either 100% (if the two films contain the same shot) or 50/50 (if the two films

contained different shots). This would mean, therefore, that in some cases the

algorithm was more likely making a random choice, whereas the stated aim of the

algorithm was to be making a choice based on shots that commonly appear. The

55

larger model proposed would mean therefore that each genre has an equal share of

five films to analyse, which should minimise the number of times the algorithm

makes a random choice. Table 5 lists the further ten films that were used to expand

the database.

Table 5: A table to show the ten films added to the project database

Film Genre No of Shots Citation

Hard Boiled Action 27 (Woo, 1992)

The

Untouchables

Thriller 20 (De Palma, 1987)

Hot Shots! Part

Deux

Comedy 41 (Abrahams, 1993)

The Outlaw Josey

Wales

Western 34 (Eastwood, 1976)

Unforgiven Western 32 (Eastwood, 1992)

21 Jump Street Comedy 22 (Lord, Miller,

2012)

The Third Man Thriller 50 (Reed, 1949)

No Country for

Old Men

Thriller 32 (Coen, Coen,

2007)

Léon: The

Professional

Action 27 (Besson, 1994)

Kelly’s Heroes Comedy 34 (Hutton, 1970)

56

6.2 Final Implementation

A final version was created to address the issues highlighted during black box

testing. The changes needed were added to a new Trello board, shown in Figure

29, with Table 6 showcasing the results of black box testing with these new

features. Appendix C shows the final version of the project before user testing.

Figure 29: A figure to show the Trello board for the final implementation

Table 6: A table to show black box testing for features in the final

implementation

Test Input Type Expected

Output

Actual

Output

Pass/Fail

The user

inputs the

number 2

Erroneous Unity will

throw a

custom error to

the user

Unity throws

an error stating

“Invalid Genre

Given! Please

give a genre of

Western,

Action,

Thriller or

Comedy”

Pass

57

(shown in

Figure 30)

The user

inputs the

genre “Horror”

Erroneous Unity will

throw a

custom error to

the user

Unity throws

an error stating

“Invalid Genre

Given! Please

give a genre of

Western,

Action,

Thriller or

Comedy”

Pass

The user

inputs the

genre “Action”

in lower case

Borderline A shot list is

generated of

type “Action”

The correct

shot list is

generated

Pass

The user can

rotate the

camera by

holding the left

click and

dragging the

mouse

Expected The camera

rotates in the

direction the

mouse moves

The camera

does rotate in

the direction of

mouse

movement,

done via

(Devsplorer,

2020)

Pass

The user can

get further

information on

a specific type

of shot by

pressing I

Expected When pressing

I, information

about the

current shot is

displayed to

the user and

turned off with

I

The

information is

correct for

each current

shot and can be

turned on and

off with I

Pass

58

The user can

create

screenshots of

current work

by pressing C

Expected When pressing

C, a screenshot

of the user’s

current previs

can be created

and viewed

Screenshots

are created of

the current

previs. Done

via (C#

Examples,

undated)

Pass

Figure 30: A figure to show improved error messages for invalid genres

All changes outlined are now completed to generate a smoother user experience

for testers. It should also be noted that, during this implementation, the way shots

were selected in the event of a tie had now changed. Selection would now be a

random choice between the shots causing the tie rather than the first shot found by

the system, outlined in Figure 31 following a tutorial (StackOverflow, 2021).

Figure 31: A figure to show how tie breaks are now solved

This was done to emulate the goal of system transparency. In an earlier version,

the algorithm was explicit in stating how frequently each shot appeared for each

59

part of the sequence, thus offering users more information on the different kinds

of shots that could be used, as well as outlining why each shot had been chosen by

the algorithm. This method also employs this idea. When a tester continually runs

the algorithm for the same genre they may notice that at certain points in the

sequence a different shot is generated, whilst other shots remain the same. They

can, therefore, infer that the shots that continually change are shots that are not as

common, leading users to try and consider using different combinations of shots

for this part of the sequence.

With all black box testing complete, the system was deemed adequate to start

testing with human participants.

6.3 Results of Human Testing

The final objective was to test with human participants. When testing this project,

each participant was asked to complete the steps outlined in Chapter 4.5. Once

completed, all questionnaire forms were collected and the data transcribed into the

bar charts that are detailed in Appendix D. Responses on the likert scale reflected

users’ opinions being one of five options; strongly disagree, disagree, neutral,

agree, strongly agree. In total, ten participants were asked to test this project, with

Appendix D showing an even split between those confident with film shot

knowledge and those not confident, meaning the software could be tested on both

laypeople and professionals alike. From there, questions could be split into two

types:

• Does the software fulfil the aim?

• Does the software deliver a good user experience?

60

6.3.1 Does the software fulfil the aim?

The aim would be tested by comparing what a user believes their shot list should

look like to what the algorithm believes it should look like. Therefore, if the user

prefers the algorithm’s predictions, then the algorithm succeeds in being able to

be used to employ shots in a previs before film creation. If the user instead feels

that their own output is better than the algorithm, then the algorithm is not effective

in fulfilling this aim. This is shown in Appendix D. In general, all but one user

was confident in creating their own shot list, with one opting not to do so due to

their lack of experience with film. However, for those that did, all unanimously

agreed that the algorithm had a better output than their own creation, meaning that

the primary purpose had been fulfilled. As a recommendation system, the

algorithm was recommending shots that users found helpful, with one commenting

that it “works well at recommending shots I would not have expected or thought

of.”

6.3.2 Does the software deliver a good user experience?

With the aim having proven to be successful, the other consideration for this

software was does it succeed at providing a good user experience i.e. being easily

understood by both laypeople and professionals alike. Appendix D asked how well

users were able to use the system to differentiate between shots, how well they felt

the system could be understood and how well they felt shots were visualised in the

system, with the aim being to break down the jargon of film terminology to be

more understandable to the layperson. The first and second questions were

answered extremely positively, showing that there was no confusion between how

different shots looked and that it was easy to understand. However the latter, while

still mostly positive, had one tester disagree with the statement that they could

visualise how shots would look in the system, while a further two were neutral.

This means that while most testers could use the visual guidance provided by

Unity to understand how each shot would look in a previs, there is still further

61

work to be done on providing more visual clarity for users who are new to film

terminology, even if they understand the general system.

All other questions in Appendix D refer to general user experience, such as ease

of use which was considered positive by all, whether it was quick to learn how the

system worked, which was again viewed positively, if users felt confident, which

most agreed with bar one who was neutral and finally, if the system was

cumbersome which most disagreed with, however again one was neutral.

However there were more split opinions when testers were asked if they felt they

needed to learn a lot of things before using the system and if the system was for

general use, i.e. to create previses for films. Two people agreed that they had

needed to learn a lot prior to testing, with one strongly agreeing. This was mainly

due to some users not having used the Unity interface prior to testing and thus

certain terminology such as “play mode” in the read me document was unfamiliar

to them. Since Unity is an interface primarily used for game development, it

should be taken into consideration that those from a non-game development

background will require a read me document that is not full of “internal jargon”

(Nielson, 1994). Eight either agreed or strongly agreed with the question related

to general use but two other users were either neutral or disagreed. This could be

because the question itself was not fully clear: general use can be considered

ambiguous in this context when considering the software used itself is designed

for a specialised field, that being film development.

6.3.3 Further Comments

As mentioned in Chapter 4.5, open questions were included in this questionnaire.

As expected, not all testers answered this question (40% answered). Those that did

offered suggestions for improvements to this project, which will be considered for

future development. These included adding more film genres and a dropdown field

rather than a text field for genre generation. Along with the positive comment

62

identified in 6.2.1, another user liked the addition of an information button,

reinforcing the idea that this system is achieving its function as a recommendation

system, especially for the layperson.

63

Chapter 7

Conclusion

Overall, the aims and objectives set out to be achieved by the project were all

completed to a good standard together with all requirements, as outlined in

Chapter 6. Additional requirements identified to create an appropriate

recommendation system and a UI with a good user experience were also followed

and successfully achieved during development. The aims and objectives were

appropriate to the issues identified in the introduction: as the software was

designed to aid future directors in choosing suitable film shots. An algorithmic

solution was deemed necessary, with the purpose of this algorithm being to

identify the most common film shots for a director to choose. All objectives were

therefore created bearing this algorithm in mind; to create the dataset used by the

algorithm the specific film shot used must first be learned and films needed to also

be analysed to create data for the algorithm. To facilitate the user experience

requirements, images were needed to provide visual indications to the user as to

how a shot would look. A good UI was required to facilitate UXD heuristics. To

assess how effective the software was in achieving the aim, the artefact needed to

be tested by users to generate data that could support or hinder the question

outlined in the aim, also testing whether or not the software was effective as a

recommendation system and if it successfully provided a good user experience.

The results gathered in Chapter 6 show that this was predominately achieved.

The initial methodology proposed for this project was not followed, due to the

initial aims and objectives changing over time and the methodology therefore

needing to adapt. As can be seen in Appendix A, the use of Scrumban has been

successfully implemented over the course of the project to keep track of current

objectives (shown in product backlog) whilst also using the fluidity of agile to

64

continually adapt the product backlog when potential improvements or

requirements were discovered during implementation.

This project has used a database like system to generate an algorithm used to

predict a set of film shots with the purpose of creating a previs that can be used by

aspiring directors. Whilst the use of this type of algorithm has been successful,

there are improvements to consider. Firstly, as described in Chapter 3, the use of

a database like system was ideally imagined to be of an O(N) complexity, however

in practice, as can be seen in Figure 32, the complexity of this project is instead

O(N2) due to a nested for loop produced when generating the shot list for the user

to use.

Figure 32: A figure to show the nested for loop that exists in this project

It was argued in Chapter 3 that, due to the relatively small dataset being used, a

complexity of O(N) was considered to not adversely affect the project. This is still

considered to be the case even with a quadratic complexity. However, it is clear

that for a much larger dataset, such as a 100 film dataset, that the time taken to

generate the film list would start to become untenable. Furthermore, the data file

must follow a specific format in order for the data to be properly handled by the

algorithm. This would become time consuming as the number of films added to

this file increases. Although SQL was argued to not be needed for the scope of this

project, on reflection it may have made the organisation of data more efficient than

the method currently used and may be able to reach the O(N) complexity desired

65

when creating queries, so should be considered if implementing this project with

a larger dataset.

During the literature review, more research may have been advisable to investigate

different ways to generate the shot list for the user. Whilst it was argued that

machine learning may not have been a fully advisable solution due to the potential

of having too small an accuracy, the machine learning paradigm proposed, a CNN

has a complexity outlined in Figure 33.

Figure 33: A figure showing the time complexity of a CNN (He et al., 2015, 2)

As s and m are constants in this equation, the complexity simplifies down to O(N),

the same as was proposed in the requirement analysis and, therefore, more efficient

than the current implementation. This means that further research to try and

increase the accuracy of machine learning should be carried out to correctly

identify film shots for the input data. This would then be used instead as the input

data to generate film lists. Whilst great care was taken to ensure that no film shots

had been misclassified during this research, it should be acknowledged that there

is still the potential that human error may have found its way into the system, so

by having more accurate machine learning models the risk of this can also be

significantly reduced. Another implementation of this project could try to

implement a machine learning model to aim for better accuracy than discovered

by Vacchetti et al., improving the time complexity for larger datasets and

removing human error. However, if this route was taken, research would be

needed on finding a dataset for training, decide which machine learning algorithm

66

should be utilised and finally whether or not inaccuracy can ever truly be

eradicated by machine learning.

Further research should be considered to examine the context in which the

different shots are used and to incorporate this when creating the shot list. Bowen,

notes how shots such as a close ups to “bring the subject inside a viewer’s personal

space – in a good way if the viewer likes the subject and in a bad way if he or she

does not” (2017, 14). In addition Heiderich explains when certain shots should be

used “Moving from long (wide) to close shots is a trade-off between showing

informative visuals or intimate emotions. You can’t have more of one without

giving up an equal amount of the other” (2012, 6). This could mean, for instance,

that a director may wish to show a close up for character emotions and a wide shot

for establishing potential locations. Many directors have a distinct visual style that

often influences the types of shots they use. Wes Anderson for example has

“perfected a type of shot…. a static, flat-looking, medium-long (medium full) or

long (wide) shot” (MacDowell, 2012, 4). The current model proposed is purely

statistical and only focuses on how common each shot is at each position, with the

subtext being that these common shots are the best shots to use due to their

frequency. Further research should also be conducted, therefore, to examine what

shot would best lead on to another based on either a director’s given style or the

current context of the film analysed.

One final consideration to develop the system still further is to also include more

of a filmmaker’s lexicon into the system. Currently, only a specific subset of shots,

such as the close up, have been included as input data for the system. However,

there are other aspects of film to consider, for instance the angle at which a shot is

filmed, i.e. a low angled shot. This would help to further the layperson’s

understanding of filmmaking.

67

The stated aim of this system was to create an algorithm that could recommend

film shots to a user, with the purpose of making the act of film making more

accessible to the layperson. The results gathered show that users found that the

software recommended a better shot list than the one they had initially created,

with the different shots also being easy to differentiate between. However, in

creating a model that focuses on the most commonly used shots, is the creative

freedom of the layperson being restricted if they all choose to use the same

generated shot list which they perceive as being better than their own? Would this,

therefore, risk films becoming more homogeneous and stifle individual

expression? It may, therefore, be beneficial to conduct further research into

whether or not this project facilitates the creative freedom it hoped for or instead

stifles it given the tools supplied to encourage this.

Word Count

12144

68

References

Abrahams, J. (dir.) (1993) Hot Shots! Part Deux [film]. 20th Century Fox.

Anderson, W. (dir.) (2014) The Grand Budapest Hotel [film]. Fox Searchlight

Pictures.

Armitage, G. (dir.) (1997) Grosse Pointe Blank [film]. Buena Vista Pictures

Distribution.

Arnold, V., Clark, N., Collier, P.A., Leech, S.A. and Sutton, S.G., 2006. The

differential use and effect of knowledge-based system explanations in novice and

expert judgment decisions. Mis Quarterly, pp.79-97.

Atlassian (2020) Trello [software]. New York: Atlassian. Available from

https://trello.com/?&aceid=&adposition=&adgroup=150132215251&campaign=

19250238417&creative=641300559579&device=c&keyword=trello&matchtype

=e&network=g&placement=&ds_kids=p74526191747&ds_e=GOOGLE&ds_ei

d=700000001557344&ds_e1=GOOGLE&gad=1&gclid=EAIaIQobChMIg_qz9d

nP_gIVGr_tCh0cwQzcEAAYASAAEgKtXPD_BwE&gclsrc=aw.ds [accessed

25 January 2023].

Besson, L. (dir.) (1994) Léon: The Professional [film]. Gaumont Buena Vista

International.

Bowen, C.J., 2017. Grammar of the Shot. Taylor & Francis.

Breitinger, F., Baier, H. and White, D., 2014. On the database lookup problem of

approximate matching. Digital Investigation, 11, pp.S1-S9.

Brown, B., 2016. Cinematography Theory and Practice: Imagemaking for

Cinematographers & Directors. Routledge. [accessed 25th January 2023].

https://trello.com/?&aceid=&adposition=&adgroup=150132215251&campaign=19250238417&creative=641300559579&device=c&keyword=trello&matchtype=e&network=g&placement=&ds_kids=p74526191747&ds_e=GOOGLE&ds_eid=700000001557344&ds_e1=GOOGLE&gad=1&gclid=EAIaIQobChMIg_qz9dnP_gIVGr_tCh0cwQzcEAAYASAAEgKtXPD_BwE&gclsrc=aw.ds
https://trello.com/?&aceid=&adposition=&adgroup=150132215251&campaign=19250238417&creative=641300559579&device=c&keyword=trello&matchtype=e&network=g&placement=&ds_kids=p74526191747&ds_e=GOOGLE&ds_eid=700000001557344&ds_e1=GOOGLE&gad=1&gclid=EAIaIQobChMIg_qz9dnP_gIVGr_tCh0cwQzcEAAYASAAEgKtXPD_BwE&gclsrc=aw.ds
https://trello.com/?&aceid=&adposition=&adgroup=150132215251&campaign=19250238417&creative=641300559579&device=c&keyword=trello&matchtype=e&network=g&placement=&ds_kids=p74526191747&ds_e=GOOGLE&ds_eid=700000001557344&ds_e1=GOOGLE&gad=1&gclid=EAIaIQobChMIg_qz9dnP_gIVGr_tCh0cwQzcEAAYASAAEgKtXPD_BwE&gclsrc=aw.ds
https://trello.com/?&aceid=&adposition=&adgroup=150132215251&campaign=19250238417&creative=641300559579&device=c&keyword=trello&matchtype=e&network=g&placement=&ds_kids=p74526191747&ds_e=GOOGLE&ds_eid=700000001557344&ds_e1=GOOGLE&gad=1&gclid=EAIaIQobChMIg_qz9dnP_gIVGr_tCh0cwQzcEAAYASAAEgKtXPD_BwE&gclsrc=aw.ds
https://trello.com/?&aceid=&adposition=&adgroup=150132215251&campaign=19250238417&creative=641300559579&device=c&keyword=trello&matchtype=e&network=g&placement=&ds_kids=p74526191747&ds_e=GOOGLE&ds_eid=700000001557344&ds_e1=GOOGLE&gad=1&gclid=EAIaIQobChMIg_qz9dnP_gIVGr_tCh0cwQzcEAAYASAAEgKtXPD_BwE&gclsrc=aw.ds

69

Bucanek, J., 2009. Model-view-controller pattern. Learn Objective-C for Java

Developers, pp.353-402.

Byrne, J. (2022) ‘Developing Software to Create High Quality Game Cinematics’

CMP3753M: Project. University of Lincoln. Unpublished assignment.

Byrne, J. (2023) ‘Literature Review and Progress Update’, CMP3753M: Project.

University of Lincoln. Unpublished assignment.

C# Examples (undated) Delete All Files (*.*) [C#]. C# Examples. Available from

https://www.csharp-examples.net/delete-all-files/ [accessed 28 April 2023].

Case, D., (2013). Film technology in post production. Taylor & Francis. [accessed

28 October 2022].

Coen, J. Coen, E. (dirs.) (2007) No Country for Old Men [film]. Paramount

Vantage.

Connolly, T.M. and Begg, C.E., 2005. Database systems: a practical approach to

design, implementation, and management. Pearson Education.

De Goussencourt, T., Dellac, J. and Bertolino, P., 2015. A game engine as a

generic platform for real-time previz-on-set in cinema visual effects. In Advanced

Concepts for Intelligent Vision Systems: 16th International Conference, ACIVS

2015, Catania, Italy, October 26-29, 2015. Proceedings 16 (pp. 883-894).

Springer International Publishing.

De Palma, B. (dir.) (1987). The Untouchables [film]. Paramount Pictures.

Devsplorer (2020) How to Rotate Camera With Mouse Drag In X Y Axies In Unity

| Unity 3D Tutorial [video]. Available from

https://www.youtube.com/watch?v=FIiKuP-9KuY [accessed 24 April 2023].

https://www.csharp-examples.net/delete-all-files/
https://www.youtube.com/watch?v=FIiKuP-9KuY

70

Dillon, E., Anderson, M. and Brown, M., 2012, March. Comparing mental models

of novice programmers when using visual and command line environments. In

Proceedings of the 50th Annual Southeast Regional Conference (pp. 142-147).

Eastwood, C. (dir.) (1976) The Outlaw Joesy Wales [film]. Warner Bros.

Eastwood, C. (dir.) (1992) Unforgiven [film]. Warner Bros.

Endfield, C. (dir.) (1964) Zulu [film]. Paramount Pictures.

Epic Games (2022) Unreal Engine 5 [software]. Cary: Epic Games. Available

from https://www.unrealengine.com/en-US/unreal-engine-5 [accessed 4 May

2023].

Ferreira, J., Noble, J. and Biddle, R., 2007, August. Agile development iterations

and UI design. In Agile 2007 (AGILE 2007) (pp. 50-58). IEEE.

Ford, J. (dir.) (1962) The Man Who Shot Liberty Valance [film]. Paramount

Pictures.

Game Developer Training (2022) [Unity] Beginner guide – Moving the camera

with WASD [video]. Available from https://www.youtube.com/watch?v=k_-

sOqkvoI8 [accessed 2 March 2023].

Github (undated) Let’s build from here. San Francisco: Github. Available from

https://github.com/ [accessed 10 April 2023].

He, K. and Sun, J., 2015. Convolutional neural networks at constrained time cost.

In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 5353-5360).

Heiderich, T., 2012. Cinematography techniques: The different types of shots in

film. Videomakers. Accessed September, 22, p.2020.

https://www.unrealengine.com/en-US/unreal-engine-5?utm_source=GoogleSearch&utm_medium=Performance&utm_campaign=%7Bcampaigname%7D&utm_id=17086214830&sub_campaign=&utm_content=&utm_term=unreal%20engine%205%20download
https://www.youtube.com/watch?v=k_-sOqkvoI8
https://www.youtube.com/watch?v=k_-sOqkvoI8
https://github.com/

71

Heiderich, T., 2012. Cinematography techniques: The different types of shots in

film. Videomakers. Accessed September, 22, p.2020.

Hobbs, R., 2019. Transgression as creative freedom and Creative Control in the

Media Production Classroom. International Electronic Journal of Elementary

Education, 11(3), pp.207-215.

Hutton, B. (dir.) (1970) Kelly’s Heroes [film]. Metro-Goldwyn-Mayer.

Kevin Iglesias (2020) 3D Character Dummy [asset]. Unity. Available from

https://assetstore.unity.com/packages/3d/characters/humanoids/humans/3d-

character-dummy-178395 [accessed 7 March 2023].

Kwan, D. Scheinet, D. (dirs.) (2022) Everything Everywhere All At Once [film].

A24.

Leone, S. (dir.) (1966) The Good, the Bad and the Ugly [film]. Produzioni Europee

Associate.

Lord, P. Miller, C. (dirs.) (2012) 21 Jump Street [film]. Columbia Pictures. Metro-

Goldwyn-Mayer.

MacDowell, J., 2012. Wes Anderson, tone and the quirky sensibility. New Review

of Film and Television Studies, 10(1), pp.6-27.

Mahalakshmi, M. and Sundararajan, M., 2013. Traditional SDLC vs scrum

methodology–a comparative study. International Journal of Emerging

Technology and Advanced Engineering, 3(6), pp.192-196.

McKay, E.N., 2013. UI is communication: How to design intuitive, user centered

interfaces by focusing on effective communication. Newnes.

https://assetstore.unity.com/packages/3d/characters/humanoids/humans/3d-character-dummy-178395
https://assetstore.unity.com/packages/3d/characters/humanoids/humans/3d-character-dummy-178395

72

Melton, J., 1996. Sql language summary. Acm Computing Surveys (CSUR), 28(1),

pp.141-143.

Microsoft (undated) Process Class (System.Diagnostics) Redmond: Microsoft.

Available from https://learn.microsoft.com/en-

us/dotnet/api/system.diagnostics.process?view=net-8.0 [accessed 9 April 2023].

Najafi, M. and Toyoshiba, L., 2008, August. Two case studies of user experience

design and agile development. In Agile 2008 Conference (pp. 531-536). IEEE.

Nielsen, J., 1994 10. Usability heuristics for user interface design.

Nitsche, M., 2008, November. Experiments in the use of game technology for pre-

visualization. In Proceedings of the 2008 Conference on Future Play: Research,

Play, Share (pp. 160-165).

Nokobot (2020) Modern Guns: Handgun [asset]. Unity. Available from

https://assetstore.unity.com/packages/3d/props/guns/modern-guns-handgun-

129821 [accessed 8 March 2023].

Nolan, C. (dir.) (2000) Memento [film]. Newmarket.

Petricioli, L. and Fertalj, K., 2022, May. Agile Software Development Methods

and Hybridization Possibilities Beyond Scrumban. In 2022 45th Jubilee

International Convention on Information, Communication and Electronic

Technology (MIPRO) (pp. 1093-1098). IEEE.

Pries, K.H. and Quigley, J.M., 2010. Scrum project management. CRC press.

Prosser, J.D., 2012. Visual methodology. Collecting and interpreting qualitative

materials, 177.

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.process?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.process?view=net-8.0
https://assetstore.unity.com/packages/3d/props/guns/modern-guns-handgun-129821
https://assetstore.unity.com/packages/3d/props/guns/modern-guns-handgun-129821

73

Ravid, S.A., 1999. Information, blockbusters, and stars: A study of the film

industry. The Journal of Business, 72(4), pp.463-492.

Reed, C. (dir.) (1949) The Third Man [film]. British Lion Film Corporation.

Reja, U., Manfreda, K.L., Hlebec, V. and Vehovar, V., 2003. Open-ended vs.

close-ended questions in web questionnaires. Developments in applied statistics,

19(1), pp.159-177.

Resnick, M., Myers, B., Nakakoji, K., Shneiderman, B., Pausch, R., Selker, T. and

Eisenberg, M., 2005. Design principles for tools to support creative thinking.

Robillard, M., Walker, R. and Zimmermann, T., 2009. Recommendation systems

for software engineering. IEEE software, 27(4), pp.80-86.

Ronfard, R., Gandhi, V., Boiron, L. and Murukutla, V.A., 2015. The prose

storyboard language: A tool for annotating and directing movies. arXiv preprint

arXiv:1508.07593. [accessed 24th January 2023].

Schlesinger, J. (dir.) (1976) Marathon Man [film]. Paramount Pictures.

Silberschatz, A., Korth, H.F. and Sudarshan, S., 2011. Database system concepts.

Srivastava, A., Bhardwaj, S. and Saraswat, S., 2017, May. SCRUM model for

agile methodology. In 2017 International Conference on Computing,

Communication and Automation (ICCCA) (pp. 864-869). IEEE.

StackOverflow (2008) Find the most occurring number in a List<int>

StackOverflow Available from https://stackoverflow.com/questions/355945/find-

the-most-occurring-number-in-a-listint [accessed 10 January 2023].

https://stackoverflow.com/questions/355945/find-the-most-occurring-number-in-a-listint
https://stackoverflow.com/questions/355945/find-the-most-occurring-number-in-a-listint

74

StackOverflow (2009) A method to count occurrences in a list StackOverflow

Available from https://stackoverflow.com/questions/1139181/a-method-to-count-

occurrences-in-a-list [accessed 9 February 2023].

StackOverflow (2021) I want to get the most frequent values using LINQ.

StackOverflow Available from https://stackoverflow.com/questions/69569355/i-

want-to-get-most-frequent-values-using-linq [accessed 22 April 2023].

Stahelski, C. (dir.) (2014) John Wick [film]. Summit Entertainment.

Studiobinder (2020) Ultimate Guide to Camera Shots: Every Shot Size Explained

[The Shot List, Ep 1] [video]. Available from

https://www.youtube.com/watch?v=AyML8xuKfoc&list=PLEzQZpmbzckV0_a

2QCO2qF9Yfe-LKSDha [accessed 20 December 2022].

Studiobinder (undated) Different types of camera shots in film. Studiobinder.

Available from https://www.studiobinder.com/blog/types-of-camera-shots-sizes-

in-film [accessed 27 April 2023].

Tarantino, Q. (dir.) (1992) Reservoir Dogs [film]. Miramax Films.

Tarantino, Q. (dir.) (2012) Django Unchained [film]. Columbia Pictures.

TechCrunch (2023) Github says it now has 100M active users. San Francisco:

TechCrunch. Available from: https://techcrunch.com/2023/01/26/github-says-it-

now-has-100m-active-

users/?guccounter=1&guce_referrer=aHR0cHM6Ly9kdWNrZHVja2dvLmNvbS

8&guce_referrer_sig=AQAAAFz7DQpD_uon-

qsXHSUU4n6j3CbisTMX600BxN83fpH2VpZlKYysZPLUh7oPBMANB7mj3h

6v690Sv0Pc_E82aEhM_CGfFnDUTXTtRrYKToeNynf7M22FCywtxva3viaTai

5iFC02j_nMdwdFvFJ7oqxGBOmjPASa8zP5wSrF8fQc [accessed 10 April

2023].

https://stackoverflow.com/questions/1139181/a-method-to-count-occurrences-in-a-list
https://stackoverflow.com/questions/1139181/a-method-to-count-occurrences-in-a-list
https://stackoverflow.com/questions/69569355/i-want-to-get-most-frequent-values-using-linq
https://stackoverflow.com/questions/69569355/i-want-to-get-most-frequent-values-using-linq
https://www.youtube.com/watch?v=AyML8xuKfoc&list=PLEzQZpmbzckV0_a2QCO2qF9Yfe-LKSDha
https://www.youtube.com/watch?v=AyML8xuKfoc&list=PLEzQZpmbzckV0_a2QCO2qF9Yfe-LKSDha
https://www.studiobinder.com/blog/types-of-camera-shots-sizes-in-film/?utm_source=youtube&utm_medium=video&utm_campaign=content-marketing-promotion&utm_term=camera-shot-sizes&utm_content=theshotlist-shotsizes-video
https://www.studiobinder.com/blog/types-of-camera-shots-sizes-in-film/?utm_source=youtube&utm_medium=video&utm_campaign=content-marketing-promotion&utm_term=camera-shot-sizes&utm_content=theshotlist-shotsizes-video
https://techcrunch.com/2023/01/26/github-says-it-now-has-100m-active-users/?guccounter=1&guce_referrer=aHR0cHM6Ly9kdWNrZHVja2dvLmNvbS8&guce_referrer_sig=AQAAAFz7DQpD_uon-qsXHSUU4n6j3CbisTMX600BxN83fpH2VpZlKYysZPLUh7oPBMANB7mj3h6v690Sv0Pc_E82aEhM_CGfFnDUTXTtRrYKToeNynf7M22FCywtxva3viaTai5iFC02j_nMdwdFvFJ7oqxGBOmjPASa8zP5wSrF8fQc
https://techcrunch.com/2023/01/26/github-says-it-now-has-100m-active-users/?guccounter=1&guce_referrer=aHR0cHM6Ly9kdWNrZHVja2dvLmNvbS8&guce_referrer_sig=AQAAAFz7DQpD_uon-qsXHSUU4n6j3CbisTMX600BxN83fpH2VpZlKYysZPLUh7oPBMANB7mj3h6v690Sv0Pc_E82aEhM_CGfFnDUTXTtRrYKToeNynf7M22FCywtxva3viaTai5iFC02j_nMdwdFvFJ7oqxGBOmjPASa8zP5wSrF8fQc
https://techcrunch.com/2023/01/26/github-says-it-now-has-100m-active-users/?guccounter=1&guce_referrer=aHR0cHM6Ly9kdWNrZHVja2dvLmNvbS8&guce_referrer_sig=AQAAAFz7DQpD_uon-qsXHSUU4n6j3CbisTMX600BxN83fpH2VpZlKYysZPLUh7oPBMANB7mj3h6v690Sv0Pc_E82aEhM_CGfFnDUTXTtRrYKToeNynf7M22FCywtxva3viaTai5iFC02j_nMdwdFvFJ7oqxGBOmjPASa8zP5wSrF8fQc
https://techcrunch.com/2023/01/26/github-says-it-now-has-100m-active-users/?guccounter=1&guce_referrer=aHR0cHM6Ly9kdWNrZHVja2dvLmNvbS8&guce_referrer_sig=AQAAAFz7DQpD_uon-qsXHSUU4n6j3CbisTMX600BxN83fpH2VpZlKYysZPLUh7oPBMANB7mj3h6v690Sv0Pc_E82aEhM_CGfFnDUTXTtRrYKToeNynf7M22FCywtxva3viaTai5iFC02j_nMdwdFvFJ7oqxGBOmjPASa8zP5wSrF8fQc
https://techcrunch.com/2023/01/26/github-says-it-now-has-100m-active-users/?guccounter=1&guce_referrer=aHR0cHM6Ly9kdWNrZHVja2dvLmNvbS8&guce_referrer_sig=AQAAAFz7DQpD_uon-qsXHSUU4n6j3CbisTMX600BxN83fpH2VpZlKYysZPLUh7oPBMANB7mj3h6v690Sv0Pc_E82aEhM_CGfFnDUTXTtRrYKToeNynf7M22FCywtxva3viaTai5iFC02j_nMdwdFvFJ7oqxGBOmjPASa8zP5wSrF8fQc
https://techcrunch.com/2023/01/26/github-says-it-now-has-100m-active-users/?guccounter=1&guce_referrer=aHR0cHM6Ly9kdWNrZHVja2dvLmNvbS8&guce_referrer_sig=AQAAAFz7DQpD_uon-qsXHSUU4n6j3CbisTMX600BxN83fpH2VpZlKYysZPLUh7oPBMANB7mj3h6v690Sv0Pc_E82aEhM_CGfFnDUTXTtRrYKToeNynf7M22FCywtxva3viaTai5iFC02j_nMdwdFvFJ7oqxGBOmjPASa8zP5wSrF8fQc
https://techcrunch.com/2023/01/26/github-says-it-now-has-100m-active-users/?guccounter=1&guce_referrer=aHR0cHM6Ly9kdWNrZHVja2dvLmNvbS8&guce_referrer_sig=AQAAAFz7DQpD_uon-qsXHSUU4n6j3CbisTMX600BxN83fpH2VpZlKYysZPLUh7oPBMANB7mj3h6v690Sv0Pc_E82aEhM_CGfFnDUTXTtRrYKToeNynf7M22FCywtxva3viaTai5iFC02j_nMdwdFvFJ7oqxGBOmjPASa8zP5wSrF8fQc

75

The Numbers (2022) Everything Everywhere All At Once (2022) Beverly Hills:

The Numbers. Available from https://www.the-numbers.com/movie/Everything-

Everywhere-All-At-Once-(2022)#tab=summary [accessed 7 March 2023].

Unity (2012) How do I make the camera zoom in and out with the mouse wheel?

Unity. Available from https://answers.unity.com/questions/218347/how-do-i-

make-the-camera-zoom-in-and-out-with-the.html [accessed 2 March 2023].

Unity (2014) How to read .json file. Unity. Available from

https://forum.unity.com/threads/how-to-read-json-file.401306/ [accessed 2 March

2023].

Unity (2021) 2021 Gaming Report. Unity. Available from

https://create.unity.com/2021-game-report [accessed 6 April 2023].

Unity (undated) EditorWindow Unity. Available from

https://docs.unity3d.com/ScriptReference/EditorWindow.html [accessed 8 March

2023].

Unity (undated) Unity – Scripting API: Editor. Unity. Available from

https://docs.unity3d.com/ScriptReference/Editor.html [accessed 6 April 2023].

Unity Technologies (2023) Unity [software]. San Francisco: Unity Technologies.

Available from https://unity.com/download [accessed 4 May 2023].

Vacchetti, B. and Cerquitelli, T., 2022. Cinematographic Shot Classification with

Deep Ensemble Learning. Electronics, 11(10), p.1570.

Van Den Brink, H., Van Der Leek, R. and Visser, J., 2007, September. Quality

assessment for embedded SQL. In Seventh IEEE International Working

Conference on Source Code Analysis and Manipulation (SCAM 2007) (pp. 163-

170). IEEE.

https://www.the-numbers.com/movie/Everything-Everywhere-All-At-Once-(2022)#tab=summary
https://www.the-numbers.com/movie/Everything-Everywhere-All-At-Once-(2022)#tab=summary
https://answers.unity.com/questions/218347/how-do-i-make-the-camera-zoom-in-and-out-with-the.html
https://answers.unity.com/questions/218347/how-do-i-make-the-camera-zoom-in-and-out-with-the.html
https://forum.unity.com/threads/how-to-read-json-file.401306/
https://create.unity.com/2021-game-report
https://docs.unity3d.com/ScriptReference/EditorWindow.html
https://docs.unity3d.com/ScriptReference/Editor.html
https://unity.com/download

76

Woo, J. (dir.) (1992) Hard Boiled [film]. Golden Princess Film Production.

Wu, H.Y. and Christie, M., 2015, May. Stylistic patterns for generating

cinematographic sequences. In 4th Workshop on Intelligent Cinematography and

Editing Co-Located w/Eurographics 2015.

Wu, H.Y., Palù, F., Ranon, R. and Christie, M., 2018. Thinking like a director:

Film editing patterns for virtual cinematographic storytelling. ACM Transactions

on Multimedia Computing, Communications, and Applications (TOMM), 14(4),

pp.1-22.

Zhao, R., Benbasat, I. and Cavusoglu, H., 2019. DO USERS ALWAYS WANT

TO KNOW MORE? INVESTIGATING THE RELATIONSHIP BETWEEN

SYSTEM TRANSPARENCY AND USERS’TRUST IN ADVICE-GIVING

SYSTEMS.

77

Appendix A: Trello Boards

This appendix details all Trello boards used during the development of this

assignment after the first iteration. Each sub section details the start and end of

each iteration.

 A.1 Second iteration

78

A.2 Third iteration

A.3 Fourth iteration

It was discovered that an extra feature was during the MVC creation, so the fourth

iteration had an updated product backlog during development.

79

A.4 Fifth iteration

80

A.5 Sixth iteration

81

Appendix B

The questionnaire used for user testing is outlined below.

82

83

84

Appendix C

A rough outline of the project UI is detailed below:

Appendix C.1

A read me document is included to give instructions to the user

Appendix C.2

Following this guidance, C.2 shows a step by step work through on using this

project.

85

Firstly, the user would click the Tools/Genre Generation, type the required genre,

then press the Start Genre Generation button.

When the user presses play mode, they will have a shot list generated.

Pressing the right button (or pressing the right arrow key) moves the shot list

forward by one.

86

Pressing the left arrow (or the left arrow key) moves the shot list back by one.

Pressing F toggles the canvas on and off.

87

Pressing I toggles information about each shot.

Pressing C creates screenshots in the “ExampleScreenshots” folder.

88

The user can also move the camera by moving it with WASD, using the scroll

wheel to zoom in and out and dragging the mouse to rotate the camera.

89

Appendix D

These are all participant responses to the questionnaire in Appendix B.

90

91

92

